基于肿瘤微环境增强抗肿瘤治疗效果的纳米递药系统设计及应用

龚珈苧, 李凤云, 裴泽荣, 刘金凤, 邱峰

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (20) : 1685-1696.

PDF(2722 KB)
PDF(2722 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (20) : 1685-1696. DOI: 10.11669/cpj.2022.20.001
综述

基于肿瘤微环境增强抗肿瘤治疗效果的纳米递药系统设计及应用

  • 龚珈苧, 李凤云*, 裴泽荣, 刘金凤, 邱峰
作者信息 +

Design and Application of Nano Drug Delivery System for Enhanced Antitumor Therapy Based on Tumor Microenvironment

  • GONG Jia-ning, LI Feng-yun*, PEI Ze-rong, LIU Jin-feng, QIU Feng
Author information +
文章历史 +

摘要

纳米递送系统是当前解决抗肿瘤药物靶向性差、毒副作用大及生物利用度低等关键问题的有效手段之一。与正常组织相比,肿瘤微环境具有一些独特的性质,如血管异常、缺氧和酸性pH等,这些复杂的性质极大的影响药物在肿瘤部位的递送。基于肿瘤微环境来设计纳米递药系统可以改善递送效率以增强抗肿瘤治疗效果。本文综述了肿瘤微环境的组成、特征及基于肿瘤微环境所设计的纳米递药系统的应用研究,并讨论了其中存在的挑战和机遇,旨在为促进纳米递送系统在临床上的实际应用提供参考。

Abstract

Nano-delivery system is one of the effective means to solve the key problems of poor targeting, high toxicity and low bioavailability of anti-tumor drugs. Compared with normal tissues, tumor microenvironment has some unique properties, such as abnormal blood vessels, hypoxia and acidic pH, etc. These complex properties greatly affect the delivery of drugs at the tumor site. The design of nano drug delivery system based on tumor microenvironment can improve the delivery efficiency and enhance the anti-tumor therapeutic effect. In this paper, the composition and characteristics of tumor microenvironment and the application of nano-drug delivery system based on tumor microenvironment are summarized, and the challenges and opportunities are discussed, in order to provide reference for promoting the practical application of nano-drug delivery system in clinic.

关键词

纳米递送系统 / 靶向性 / 响应释放 / 肿瘤微环境 / 递送效率

Key words

nano delivery system / targeting / response release / tumour microenvironment / delivery efficiency

引用本文

导出引用
龚珈苧, 李凤云, 裴泽荣, 刘金凤, 邱峰. 基于肿瘤微环境增强抗肿瘤治疗效果的纳米递药系统设计及应用[J]. 中国药学杂志, 2022, 57(20): 1685-1696 https://doi.org/10.11669/cpj.2022.20.001
GONG Jia-ning, LI Feng-yun, PEI Ze-rong, LIU Jin-feng, QIU Feng. Design and Application of Nano Drug Delivery System for Enhanced Antitumor Therapy Based on Tumor Microenvironment[J]. Chinese Pharmaceutical Journal, 2022, 57(20): 1685-1696 https://doi.org/10.11669/cpj.2022.20.001
中图分类号: R944   

参考文献

[1] YAN Z, LAI Z, LIN J. Anticancer properties of traditional Chinese medicine[J].Comb Chem High Throughput Screen, 2017, 20(5):423-429.
[2] AGGARWAL B B, SHISHODIA S. Suppression of the nuclear factor-kappa B activation pathway by spice-derived phytochemicals: reasoning for seasoning[J]. Ann N Y Acad Sci, 2010, 1030(1): 434-441.
[3] GANTA S, AMIJI M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells[J]. Mol Pharm, 2009, 6(3): 928-939.
[4] KAMINAGA Y, NAGATSU A, AKIYAMA T, et al. Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus[J]. FEBS Lett, 2003, 555(2): 311-316.
[5] ANAND P, KUNNUMAKKARA A B, NEWMAN R A, et al.Bioavailability of curcumin: problems and promises[J]. Mol Pharm, 2007, 4(6): 807-818.
[6] WHITESIDE T L. The tumor microenvironment and its role in promoting tumor growth[J]. Oncogene, 2008, 27(45): 5904-5912.
[7] ARNETH B. Tumor Microenvironment[J].Medicina(Kaunas Lith), 2019, 56(1): 15-37.
[8] WU T, DAI Y. Tumor microenvironment and therapeutic response[J].Cancer Lett, 2017, 387(1): 61-68.
[9] DAI Y, XU C, SUN X, et al. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment[J].Chem Soc Rev, 2017, 46(12): 3830-3852.
[10] YANG S, GAO H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy[J]. Pharmacol Res, 2017, 126(1):97-108.
[11] HUAI Y, HOSSEN M N, WILHELM S, et al. Nanoparticle interactions with the tumor microenvironment[J]. Bioconjug Chem, 2019, 30(9): 2247-2263.
[12] CARMELIET P. VEGF as a key mediator of angiogenesis in cancer[J].Oncology, 2005, 69(3): 4-10.
[13] ROY S, KUMARAVEL S, SHARMA A, et al. Hypoxic tumor microenvironment: Implications for cancer therapy[J]. Exp Biol Med(Maywood), 2020, 245(13): 1073-1086.
[14] SHANG B, CAO Z, ZHOU Q. Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives[J]. Front Med, 2012, 6(1): 67-78.
[15] BOEDTKJER E, PEDERSEN S F. The acidic tumor microenvironment as a driver of cancer[J]. Annu Rev Physiol, 2020, 82(1): 103-126.
[16] DHARMARATNE N U, KAPLAN A R, GLAZER P M. Targeting the hypoxic and acidic tumor microenvironment with pH-sensitive peptides[J]. Cells, 2021, 10(3): 541-555.
[17] MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater,2013, 12(11): 991-1003.
[18] YU Z, GE Y, SUN Q, et al. A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite[J]. Chem Sci, 2018, 9(14): 3563-3569.
[19] FANG J, ISLAM W, MAEDA H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers[J]. Adv Drug Deliv Rev, 2020, 157(1): 142-160.
[20] GREISH K. Enhanced permeability and retention(EPR) effect for anticancer nanomedicine drug targeting[J]. Methods Mol Biol, 2010, 624(1): 25-37.
[21] WANG S, SU R, NIE S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals[J]. J Nutr Biochem, 2014, 25(4): 363-376.
[22] GABIZON A, SHMEEDA H, BARENHOLZ Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies[J]. Clin Pharmacokinet, 2003, 42(5): 419-436.
[23] KAMEL S A, SAIED A H, ABDELMONEIM H A, et al. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications[J]. J Drug Target, 2019, 27(7): 742-761.
[24] LIU Y, YANG G, BABY T, et al. Stable polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation[J]. Angew Chem Int Ed, 2020, 132(12): 4750-4758.
[25] ZHANG Y, LI Y, MA J, et al. Convenient preparation of charge-adaptive chitosan nanomedicines for extended blood circulation and accelerated endosomal escape[J]. J Nano Res,2018, 11(8): 4278-4292.
[26] CARVALHO B G, VIT F F, CARVALHOa H F, et al. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment[J]. J Mater Chem B, 2021, 9(5): 1208-1237.
[27] ZHAN Y, WANG H, SU M, et al. Mesoporous silica and polymer hybrid nanogels for multistage delivery of an anticancer drug[J]. J Mater Sci, 2021, 56(7): 1-13.
[28] STROZYK M S, CARREGAL-ROMERO S, HENRIKSEN-LACEY M, et al. Biocompatible, multiresponsive nanogel composites for codelivery of antiangiogenic and chemotherapeutic agents[J]. Chem Mater, 2017, 29(5): 2303-2313.
[29] YANG J, YANG Y W. Metal-organic frameworks for biomedical applications[J]. Small, 2020, 16(10):1906846, Doi:10.1002/smll.201906846.
[30] LI L, GUO L, ZHENG F, et al.Calcium-based metal-organic framework for simultaneous capture of trace propyne and propadiene from propylene[J].ACS Appl Mater Interfaces, 2020, 12(14): 17147-17154.
[31] GUO Q, CHANG Z, KHAN N U, et al. Nanosizing noncrystalline and porous silica material-naturally occurring opal shale for systemic tumor targeting drug delivery[J]. ACS Appl Mater Interfaces, 2018, 10(31): 25994-26004.
[32] XU J, WANG X, TENG Z, et al. Multifunctional yolk-shell mesoporous silica obtained via selectively etching the shell: A therapeutic nanoplatform for cancer therapy[J]. ACS Appl Mater Interfaces, 2018, 10(29): 24440-24449.
[33] WANG Y, CHENG J, ZHAO D, et al. Designed DNA nanostructure grafted with erlotinib for non-small-cell lung cancer therapy[J]. Nanoscale, 2020, 12(47): 23953-23958.
[34] WICKI A, WITZIGMANN D, BALASUBRAMANIAN V, et al. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications[J]. J Controlled Release, 2015, 200(1): 138-157.
[35] PRABHAKAR U, MAEDA H, JAIN R K, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology[J]. Cancer Res, 2013, 73(8): 2412-2417.
[36] PARK J, CHOI Y, CHANG H, et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment[J]. Theranostics, 2019, 9(26): 8073-8090.
[37] DANHIER F, FERON O, PREAT V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery[J]. J Controlled Release, 2010, 148(2): 135-146.
[38] MI P, CABRAL H, KATAOKA K. Ligand-installed nanocarriers toward precision therapy[J]. Adv Mater, 2020, 32(13): e1902604, Doi:10.1002/adma.201902604.
[39] FU Z Y, XIANG J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy[J]. Int J Mol Sci, 2020, 21(23): 1-39.
[40] DUAN D, WANG A, NI L, et al. Trastuzumab- and Fab′ fragment-modified curcumin PEG-PLGA nanoparticles: preparation and evaluation in vitro and in vivo[J]. Int J Nanomed, 2018, 13(1): 1831-1840.
[41] CHERKASOV V R, MOCHALOVA E N, BABENYSHEV A V, et al. Antibody-directed metal-organic framework nanoparticles for targeted drug delivery[J]. Acta Biomater, 2020, 103(1): 223-236.
[42] WANG M, LIU W, ZHANG Y, et al. Intercellular adhesion molecule 1 antibody-mediated mesoporous drug delivery system for targeted treatment of triple-negative breast cancer[J]. J Colloid Interface Sci, 2019, 538: 630-637.
[43] LIAO W S, HO Y, LIN Y W, et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite[J]. Acta Biomater, 2019, 86(1): 395-405.
[44] SHEN J, CAI W, MA Y, et al. hGC33-modified and sorafenib-loaded nanoparticles have a synergistic anti-hepatoma effect by inhibiting wnt signaling pathway[J]. Nanoscale Res Lett, 2020(1), 15: 220-235.
[45] KHANNA V, KALSCHEUER S, KIRTANE A, et al. Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer[J]. Future Drug Discov, 2019, 1(1): FDD8, Doi:10.4155/fdd-2019-0005.
[46] SON S, SHIN S, RAO N V, et al. Anti-Trop2 antibody-conjugated bioreducible nanoparticles for targeted triple negative breast cancer therapy[J]. Int J Biol Macromol, 2018, 110(1): 406-415.
[47] XU S, CUI F, HUANG D, et al. PD-L1 monoclonal antibody-conjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells[J]. Int J Nanomed, 2018, 14(1): 17-32.
[48] XIE X, LI F, ZHANG H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery[J]. Eur J Pharm Sci, 2016, 83(1): 28-35.
[49] TAO W, ZENG X, WU J, et al. Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects[J]. Theranostics, 2016, 6(4): 470-484.
[50] LI N, WANG X Y, XIANG M H, et al. Programmable self-assembly of protein-scaffolded DNA nanohydrogels for tumor-targeted imaging and therapy[J]. Anal Chem, 2019, 91(4): 2610-2614.
[51] XIAO M, LAI W, WANG F, et al. Programming drug delivery kinetics for active burst release with DNA toehold switches[J]. J Am Chem Soc, 2019, 141(51): 20354-20364.
[52] WANG D, PENG R, PENG Y, et al. Hierarchical fabrication of DNA wireframe nanoarchitectures for efficient cancer imaging and targeted therapy[J]. ACS Nano, 2020, 14(12): 17365-17375.
[53] CHOWDHURY N, CHAUDHRY S, HALL N, et al. Targeted delivery of doxorubicin liposomes for Her-2+breast cancer treatment[J]. AAPS PharmSciTech, 2020, 21(6): 202-214.
[54] NIE L, SUN S, SUN M, et al. Synthesis of aptamer-PEI-g-PEG modified gold nanoparticles loaded with doxorubicin for targeted drug delivery[J]. J Vis Exp, 2020, (160): e61139, Doi:10.3791/61139.
[55] OUYANG C, ZHANG S, XUE C, et al. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo[J]. J Am Chem Soc, 2020, 142(3): 1265-1277.
[56] LIU J, LIU Q, YANG C, et al. cRGD-modified benzimidazole-based pH-responsive nanoparticles for enhanced tumor targeted doxorubicin delivery[J]. ACS Appl Mater Interfaces, 2016, 8(17): 10726-10736.
[57] HUANG Z G, LV F M, WANG J, et al. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability[J]. Int J Pharm, 2019, 556(1): 217-225.
[58] ZOU Y, WEI J, XIA Y, et al. Targeted chemotherapy for subcutaneous and orthotopic non-small cell lung tumors with cyclic RGD-functionalized and disulfide-crosslinked polymersomal doxorubicin[J]. Signal Transduct Target Ther, 2018, 3(1): 32-40.
[59] CAO Z, LI D, WANG J, et al. Direct nucleus-targeted drug delivery using cascade pHe?/photo dual-sensitive polymeric nanocarrier for cancer therapy[J]. Small, 2019, 15(36): e1902022, Doi:10.1002/smll.201902022.
[60] HE Y, XIONG T, HE S, et al. Pulmonary targeting crosslinked cyclodextrin metal-organic frameworks for lung cancer therapy[J]. Adv Funct Mater, 2020, 31(3): 2004500, Doi:10.1002/adfm.202004550.
[61] SOBOT D, MURA S, ROUQUETTE M, et al. Circulating lipoproteins: A trojan horse guiding squalenoylated drugs to LDL-accumulating cancer cells[J]. Mol Ther, 2017, 25(7): 1596-1605.
[62] FERNANDES M A, ELOY J O, LUIZ M T, et al. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells[J]. Colloids Surf A, 2021, 611(1): 125806, Doi:10.1016/j.colsurfa.2020.125806.
[63] JIN H, PI J, ZHAO Y, et al. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy[J]. Nanoscale, 2017, 9(42): 16365-16374.
[64] MENG X, ZHAO Y, HAN B, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways[J]. Nat Commun, 2020, 11(1): 594-605.
[65] GAO F, ZHANG J, FU C, et al. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability[J]. Int J Nanomed, 2017, 12(1): 4147-4162.
[66] LIU X, SHAO W, ZHENG Y, et al. GSH-Responsive supramolecular nanoparticles constructed by β-D-galactose-modified pillar[5]arene and camptothecin prodrug for targeted anticancer drug delivery[J]. Chem Commun, 2017, 52(61): 8569-8599.
[67] XIA Y, ZHONG J, ZHAO M, et al. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma[J]. Drug Deliv, 2019, 26(1): 1-11.
[68] JAIN A, KESHARWANI P, GARG N K, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin[J]. Colloids Surf, B, 2015, 134(1): 47-58.
[69] ZHAO J, YAN C, CHEN Z, et al. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery[J]. J Colloid Interface Sci, 2019, 540(1): 66-77.
[70] LAW S, LEUNG A W, XU C. Folic acid-modified celastrol nanoparticles: synthesis, characterization, anticancer activity in 2D and 3D breast cancer models[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 542-559.
[71] YUCEL O, SENGELEN A, EMIK S, et al. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells[J]. Nanotechnology, 2020, 31(35): 355101, Doi:10.1088/1361-6528/ab9395.
[72] ZHANG M, ASGHAR S, TIAN C, et al. Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for targeting glioma[J]. Carbohydr Polym, 2021, 253(1): 117194, Doi:10.1016/j.carbpol, 2020.117194.
[73] LU Z, LONG Y, WANG Y, et al. Phenylboronic acid modified nanoparticles simultaneously target pancreatic cancer and its metastasis and alleviate immunosuppression[J]. Eur J Pharm Biopharm, 2021, 165(1):164-173.
[74] DUAN X, XIAO J, YIN Q, et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram[J]. ACS Nano, 2013, 7(7): 5858-5869.
[75] LI C, WANG J C, WANG Y G, et al. Recent progress in drug delivery[J]. Acta Pharm Sin (药学学报), 2019, 54(6):1145-1162.
[76] DONG Z, BI Y, CUI H, et al. AIE supramolecular assembly with FRET effect for visualizing drug delivery[J]. ACS Appl Mater Interfaces, 2019, 11(27): 23840-23847.
[77] WANG S, YU G, WANG Z, et al. Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release[J]. Angew Chem, 2019, 58(41):14758-14763.
[78] ZHANG P, ZHANG Y, DING X, et al. A multistage cooperative nanoplatform enables intracellular co-delivery of proteins and chemotherapeutics for cancer therapy[J]. Adv Mater, 2020, 32(46): 2000013, Doi:10.1002/adma.202000013.
[79] MIZUHARA T, SAHA K, MOYANO D F, et al. Acylsulfonamide-functionalized zwitterionic gold nanoparticles for enhanced cellular uptake at tumor pH[J]. Angew Chem, 2015, 54(22): 6567-6570.
[80] SUNDARAM H S, ELLA-MENYE J R, BRAULT N D, et al. Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation[J]. Chem Sci, 2014, 5(1): 200-205.
[81] LEE E S, NA K, BAE Y H. Super pH-sensitive multifunctional polymeric micelle[J]. Nano Lett, 2005, 5(2): 325-329.
[82] WANG Y, ZHOU K, HUANG G, et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals[J]. Nat Mater, 2014, 13(2): 204-212.
[83] THAMBI T, SON S, LEE D S, et al. Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery[J]. Acta Biomater, 2016, 29(1): 261-270.
[84] QIAN C, YU J, CHEN Y, et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy[J]. Adv Mater, 2016, 28(17): 3313-2330.
[85] ZHOU S, HU X, XIA R, et al. A paclitaxel prodrug activatable by irradiation in a hypoxic microenvironment[J]. Angew Chem, 2020, 59(51): 23198-23205.
[86] CHENG R, FENG F, MENG F, et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery[J].J Controlled Release, 2011, 152(1): 2-12.
[87] SAURA J, KUMAR A, KUMAR B, et al. Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy[J]. Carbohydr Res, 2020, 499(1):108222, Doi:10.1016/j.carres.2020.108222.
[88] MOGHADDAM S P H, YAZDIMAMAGHANI M, GHANDEHARI H. Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery[J]. J Control Release, 2018, 282(1): 62-75.
[89] WANG Y, WANG J, YANG Y, et al. In situ biodegradable crosslinking of cationic oligomer coating on mesoporous silica nanoparticles for drug delivery[J]. Colloids Surf B, 2017, 153(1): 272-279.
[90] WAN X, ZHONG H, PAN W, et al. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3?mineralized metal-organic framework[J]. Angew Chem Int Ed, 2019, 58(40): 14134-14139.
[91] PARK H, SARAVANAKUMAR G, KIM J, et al. Tumor microenvironment sensitive nanocarriers for bioimaging and therapeutics[J]. Adv Healthc Mater, 2021, 10(5):e2000834, Doi:10.1002/adhm.202000834.
[92] ROY R, YANG J, MOSES M A. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer[J]. J Clin Oncol, 2009, 27(31):5287-5297.
[93] XU Y, ZHANG J, LIU X, et al. MMP-2-responsive gelatin nanoparticles for synergistic tumor therapy[J].Pharm Dev Technol, 2019, 24(8):1002-1013.
[94] ZHANG Z T, HUANG-FU M Y, XU W H, et al. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment[J]. Eur J Pharm Biopharm, 2019, 137(1):122-130.
[95] DU H,ZHAO S, WANG Y,et al. pH/Cathepsin B hierarchical-responsive nanoconjugates for enhanced tumor penetration and chemo-immunotherapy[J]. Adv Funct Mater, 2020, 30(39): 2003757, Doi:10.1002/adfm.202003757.
[96] LIU C, SUN C, HUANG H, et al. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy[J]. Cancer Res, 2003, 63(11): 2957-2964.
[97] CHEN H, LIU X, CLAYMAN E S, et al. Synthesis and evaluation of a CBZ-AAN-dox prodrug and its in vitro effects on SiHa cervical cancer cells under hypoxic conditions[J]. Chem Biol Drug Des, 2015, 86(4):589-598.
[98] LI Y, NIU Y, ZHU J, et al. Tailor-made legumain/pH dual-responsive doxorubicin prodrug-embedded nanoparticles for efficient anticancer drug delivery and in situ monitoring of drug release[J]. Nanoscale, 2020, 12(4):2673-2685.
[99] CHEN D, QU X, SHAO J,et al. Anti-vascular nano agents: a promising approach for cancer treatment[J]. J Mater Chem B, 2020, 8(15):2990-3004.
[100] GENTILE M, MARTINO M, RECCHIA A G,et al. Sorafenib for the treatment of multiple myeloma[J]. Expert Opin Investig Drugs., 2016, 25(6):743-749.
[101] CLAVREUL A, ROGER E, POURBAGHI-MASOULEH M,et al. Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma[J]. Drug Deliv, 2018, 25(1):1756-1765.
[102] WEI Z, LIANG P, XIE J,et al. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy[J]. Chem Sci, 2019, 10(9):2778-2784.
[103] ZHOU Y, CHEN X, CAO J, et al. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy[J]. J Mater Chem B,2020, 8(31): 6765-6781.
[104] BAO Y, YU H, YANG L,et al. Combretastatin A4-combined photodynamic therapy for enhanced tumor therapeutic efficacy[J]. Mater Today Commun, 2021, 28(1):102616, Doi:10.1016/j.mtcomm.2021.102616.
[105] DAN Q, HU D, GE Y, et al. Ultrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapy[J]. Biomater Sci, 2020, 8(3): 973-987.
[106] ZHU W, DONG Z, FU T, et al. Modulation of Hypoxia in Solid Tumor Microenvironment with MnO2 Nanoparticles to Enhance Photodynamic Therapy[J]. Adv Funct Mater, 2016, 26(30): 5490-5498.
[107] LI S, LIN K, HU P, et al. A multifunctional nanoamplifier with self-enhanced acidity and hypoxia relief for combined photothermal/photodynamic/starvation therapy[J]. Int J Pharm, 2022, 611:121307, Doi:10.1016/j.ijpharm.2021.121307.

基金

国家自然科学基金项目资助(21907076),天津市教委科研计划项目资助(2018KJ008)
PDF(2722 KB)

Accesses

Citation

Detail

段落导航
相关文章

/