Advances in Research on the Mechanism of Reactive Oxygen Species in Arsenic Trioxide-Induced Cardiotoxicity
WANG Lin-ya, ZHENG Hu-yong*
Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
Abstract:Arsenic trioxide is one of the first-line targeted drugs for the treatment of acute promyelocytic leukemia, however, arsenic trioxide-induced cardiotoxicity is still a serious clinical problem. Recently, the mechanism of reactive oxygen species involved in arsenic trioxide-induced cardiotoxicity is becoming a research hotspot. And reactive oxygen species is expected to become a target for preventing arsenic trioxide-induced cardiotoxicity since it plays an important role in the mechanism of arsenic trioxide-induced cardiotoxicity.This article reviewes the mechanism of reactive oxygen species involved in the arsenic trioxide-induced cardiotoxicity.
王林娅, 郑胡镛. 活性氧自由基参与三氧化二砷心脏毒性的机制研究进展[J]. 中国药学杂志, 2022, 57(5): 329-333.
WANG Lin-ya, ZHENG Hu-yong. Advances in Research on the Mechanism of Reactive Oxygen Species in Arsenic Trioxide-Induced Cardiotoxicity. Chinese Pharmaceutical Journal, 2022, 57(5): 329-333.
POLLYEA D A, BIXBY D, PERL A, et al. NCCN guidelines insights: acute myeloid leukemia, version 2.2021: Featared updates to the NCCN guide lines[J]. J Natl Compr Cancer Netw, 2021, 19(1):16-27.
[2]
SANZ M A, FENAUX P, TALLMAN M S, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet[J]. Blood, 2019, 133(15):1630-1643.
[3]
HE L, XU Q, CHEN L, et al. A meta-analysis of arsenic trioxide combined with transcatheter arterial chemoembolization for treatment of primary hepatic carcinoma[J]. Evid Based Complement Alternat Med, 2016, 2016:1-10. doi:10.1155/2016/3428370.
[4]
HE X, YANG K, CHEN P, et al. Arsenic trioxide-based therapy in relapsed/refractory multiple myeloma patients: a meta-analysis and systematic review[J]. Onco Targets Therapy, 2014, 7:1593-1599.
[5]
PIAO W, CHAU D, YUE L M, et al. Arsenic trioxide degrades NPM-ALK fusion protein and inhibits growth of ALK-positive anaplastic large cell lymphoma[J]. Leukemia, 2017, 31(2):522-526.
[6]
LAI Y L, CHANG H H, HUANG M J, et al. Combined effect of topical arsenic trioxide and radiation therapy on skin-infiltrating lesions of breast cancer-a pilot study[J]. Anti-Cancer Drugs, 2003, 14(10):825-828.
[7]
CHEN G Q, SHI X G, TANG W, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells[J]. Blood, 1997, 89(9):3345-3353.
[8]
ZHANG X W, YAN X J, ZHOU Z R, et al. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML[J]. Science, 2010, 328(5975):240-243.
[9]
ALBINI A, PENNESI G, DONATELLI F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention[J]. J Natl Cancer Inst, 2010, 102(1):14-25.
[10]
WU Y P, LIU R T, YU L. Cardiac toxicity of arsenic trioxide in the treatment of acute promyelocyte leukemia[J]. Hainan Med J(海南医学), 2010, 21(10):13-16.
[11]
ZHOU J, MENG R, WANG W, et al. Study on cardiac toxicity in acute promyelocyte leukemia treatment of arsenic trioxide intravenous infusion in general dose[J]. Chin J Intern Med(中华内科杂志), 2003, 42(11):785-788.
[12]
NAITO K, KOBAYASHI M, SAHARA N, et al. Two cases of acute promyelocytic leukemia complicated by torsade de pointes during arsenic trioxide therapy[J]. Int J Hematol, 2006, 83(4):318-323.
[13]
BARBEY J T, SOIGNET S. Prolongation of the QT interval and ventricular tachycardia in patients treated with arsenic trioxide for acute promyelocytic leukemia[J]. Ann Intern Med, 2001, 135(9):842-843.
[14]
WESTERVELT P, BROWN R A, ADKINS D R, et al. Sudden death among patients with acute promyelocytic leukemia treated with arsenic trioxide[J]. Blood, 2001, 98(2):266-271.
[15]
ZHU H H, WU D P, DU X, et al. Oral arsenic plus retinoic acid versus intravenous arsenic plus retinoic acid for non-high-risk acute promyelocytic leukaemia: a non-inferiority, randomised phase 3 trial[J]. Lancet Oncol, 2018, 19(7):871-879.
[16]
PLATZBECKER U, AVVISATI G, CICCONI L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: final results of the randomized italian-german APL0406 trial[J]. J Clin Oncol, 2017, 35(6):605-612.
[17]
TURRENS J F. Mitochondrial formation of reactive oxygen species[J]. J Physiol, 2003, 552(2):335-344.
[18]
ANDREYEV A Y, KUSHNAREVA Y E, STARKOV A A. Mitochondrial metabolism of reactive oxygen species[J]. Biochemistry (Moscow), 2005, 70(2):200-214.
[19]
JIANG Q, YIN J, CHEN J, et al. Mitochondria-targeted antioxidants: a step towards disease treatment[J]. Oxid Med Cell Longev, 2020, 2020(20):1-18. doi:10.1155/2020/8837893.
[20]
BJORKLUND G, CHIRUMBOLO S. Role of oxidative stress and antioxidants in daily nutrition and human health[J]. Nutrition, 2017, 33:311-321.
[21]
HYBERTSON B M, GAO B, BOSE S K, et al. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation[J]. Mol Asp Med, 2011, 32(4-6):234-246.
[22]
TSUTSUI H, KINUGAWA S, MATSUSHIMA S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling[J]. Cardiovasc Res, 2009, 81(3):449-456.
[23]
MUNZEL T, CAMICI G G, MAACK C, et al. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series[J]. J Am Coll Cardiol, 2017, 70(2):212-229.
[24]
SCHIEBER M, CHANDEL N S. ROS function in redox signaling and oxidative stress[J]. Curr Biol, 2014, 24(10):R453-R462.
[25]
ZHAO X Y, LI G Y, LIU Y, et al. Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo[J]. Br J Pharmacol, 2008, 154(1):105-113.
[26]
WANG R, ZHANG J, WANG S, et al. The Cardiotoxicity induced by arsenic trioxide is alleviated by salvianolic acid a via maintaining calcium homeostasis and inhibiting endoplasmic reticulum stress[J]. Molecules, 2019, 24(3): 543.
[27]
GOMES E C, SILVA A N, OLIVEIRA M R D. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species[J]. Oxid Med Cell Longev, 2012, 2012:1-12. doi:10.1155/2012/756132.
[28]
BRIGELIUS-FLOHE R, FLOHE L. Regulatory phenomena in the glutathione peroxidase superfamily[J]. Antioxid Redox Signal, 2020, 33(7):498-516.
[29]
HALLIWELL B. Free radicals and antioxidants-quo vadis[J]. Trends Pharmacol Sci, 2011, 32(3):125-130.
[30]
TADOKORO T, IKEDA M, IDE T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J]. JCI Insight, 2020, 5(9):e132747.
[31]
ZHANG S, WU P, LIU J, et al. Roflumilast attenuates doxorubicin-induced cardiotoxicity by targeting inflammation and cellular senescence in cardiomyocytes mediated by SIRT1[J]. Drug Des Dev Ther, 2021, 15:87-97.
[32]
TANG Q, BAI L, ZOU Z, et al. Ferroptosis is newly characterized form of neuronal cell death in response to arsenite exposure[J]. Neurotoxicology, 2018, 677:27-36.
[33]
ALDAKKAK M, STOWE D F, CHEN Q, et al. Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release[J]. Cardiovasc Res, 2008, 77(2):406-415.
[34]
GOMEZ L, LI B, MEWTON N, et al. Inhibition of mitochondrial permeability transition pore opening: translation to patients[J]. Cardiovasc Res, 2009, 83(2):226-233.
[35]
ORRENIUS S, ZHIVOTOVSKY B, NICOTERA P. Regulation of cell death: the calcium-apoptosis link[J]. Nat Rev Mol Cell Biol, 2003, 4(7):552-565.
[36]
BERS D M. Cardiac excitation-contraction coupling[J]. Nature, 2002, 415(6868):198-205.
[37]
WANG X H, SUN H L, HUO R, et al. Effects of arsenic trioxide on QT interval and L-type calcium channel protein mRNA expression[J]. J Harbin Med Univ(哈尔滨医科大学学报), 2007,41(2):89-91.
[38]
DEY S, DEMAZUMDER D, SIDOR A, et al. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure[J]. Circ Res, 2018, 123(3):356-371.
[39]
MA W, WEI S, ZHANG B, et al. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity[J]. Front Cell Dev Biol, 2020, 8:1-17. doi:10.3389/fcell.2020.00434
[40]
VINEETHA V P, SOUMYA R S, RAGHU K G. Phloretin ameliorates arsenic trioxide induced mitochondrial dysfunction in H9c2 cardiomyoblasts mediated via alterations in membrane permeability and ETC complexes[J]. Eur J Pharmacol, 2015, 754:162-172. doi:10.1016/j.ejphar.2015.02.036.
[41]
BAO Z, HAN Z, ZHANG B, et al. Arsenic trioxide blocked proliferation and cardiomyocyte differentiation of human induced pluripotent stem cells: Implication in cardiac developmental toxicity[J]. Toxicol Lett, 2019, 309:51-58. doi:10.1016/j.toxlet.2019.03.008.
[42]
LI S, ZHAO H, WANG Y, et al. Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in gallus[J]. Ecotoxicol Environ Saf, 2018, 148:125-134. doi:10.1016/j.ecoenv.2018.10.018.
[43]
ZHAO H, WANG Y, LIU J, et al. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation[J]. Environ Pollut, 2019, 253:741-748. doi: 10.1016/j.envpol.2019.07.065.
[44]
RAGHU K G, CHERIAN O L. Characterization of cytotoxicity induced by arsenic trioxide (a potent anti-APL drug) in rat cardiac myocytes[J]. J Trace Elem Med Biol, 2009, 23(1):61-68.
[45]
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
[46]
HABERZETTL P, HILL B G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response[J]. Redox Biol, 2013, 1(1):56-64.
[47]
HILL B G, HABERZETTL P, AHMED Y, et al. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells[J]. Biochem J, 2008, 410(3):525-534.
[48]
FILOMENI G, DE ZIO D, CECCONI F. Oxidative stress and autophagy: the clash between damage and metabolic needs[J]. Cell Death Differ, 2015, 22(3):377-388.
[49]
WEI S, QIU T, YAO X, et al. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway[J]. J Hazard Mater, 2020, 384:1-10.
[50]
ZHOU B, LIU J, KANG R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Semin Cancer Biol, 2020, 66:89-100.
[51]
MIAO X, TANG Z, WANG Y, et al. Metallothionein prevention of arsenic trioxide-induced cardiac cell death is associated with its inhibition of mitogen-activated protein kinases activation in vitro and in vivo[J]. Toxicol Lett, 2013, 220(3):277-285.
[52]
ZHAO X Y, LI G Y, LIU Y, et al. Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo[J]. Br J Pharmacol, 2008, 154(1):105-113.
[53]
ZHANG J Y, SUN G B, LUO Y, et al. Salvianolic acid a protects H9c2 cells from arsenic trioxide-induced injury via inhibition of the MAPK signaling pathway[J]. Cell Physiol Biochem, 2017, 41(5):1957-1969.
[54]
ZHANG J Y, WANG M, WANG R Y, et al. Salvianolic acid a ameliorates arsenic trioxide-induced cardiotoxicity through decreasing cardiac mitochondrial injury and promotes its anticancer activity[J]. Front Pharmacol, 2018, 9:1-11. doi:10.3389/fphar.2018.00487.
[55]
VINEETHA R C, BINU P, ARATHI P, et al. L-ascorbic acid and alpha-tocopherol attenuate arsenic trioxide-induced toxicity in H9c2 cardiomyocytes by the activation of Nrf2 and Bcl2 transcription factors[J]. Toxicol Mech Methods, 2018, 28(5):353-360.
[56]
BINU P, PRIYA N, ABHILASH S, et al. Studies on curative efficacy of monoterpene eugenol on anti-leukemic drug arsenic trioxide induced cardiotoxicity[J]. Biomed Pharmacother, 2017, 91:559-566.
[57]
WANG L, SHI W, GAO X, et al. Cardioprotective role of metformin against sodium arsenite-induced oxidative stress, inflammation, and apoptosis[J]. IUBMB Life, 2020, 72(4):749-757.
[58]
PANNEERSELVAM L, RAGHUNATH A, RAVI M S, et al. Ferulic acid attenuates arsenic-induced cardiotoxicity in rats[J]. Biotechnol Appl Biochem, 2020, 67(2):186-195.
[59]
LIANG Y, ZHENG B, LI J, et al. Crocin ameliorates arsenic trioxideinduced cardiotoxicity via Keap1-Nrf2/HO-1 pathway: Reducing oxidative stress, inflammation, and apoptosis[J]. Biomed Pharmacother, 2020, 131:1-17. doi:10.1016/j.biopha.2020.110713.
[60]
JIANG H, LIANG G W, HUANG X J, et al. Reduced medical costs and hospital days when using oral arsenic plus ATRA as the first-line treatment of acute promyelocytic leukemia[J]. Leuk Res, 2015, 39(12):1319-1324.
[61]
ZHANG X, WANG Q, WANG X, et al. Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway[J]. Biomed Pharmacother, 2019, 112:1-9. doi:10.1016/j.biopha.2019.1108599.
[62]
HAI Y, SONG P, WANG X, et al. Realgar transforming solution as a novel arsenic agent with a lower risk of cardiotoxicity[J]. J Pharmacol Sci, 2019, 140(2):162-170.