摘要 氧化应激会破坏核酸、蛋白质和脂质等多种生物分子的结构和功能,导致基因表达调控、细胞信号转导、物质摄取及胞内运输等重要生命活动受到影响,是多种组织器官发生病变的主要因素。鼠尾草酸富含于迷迭香等植物中,能够活化细胞内抗氧化系统[如核转录因子E2相关因子2-BTB-Kelch样ECH相关蛋白1(nuclear factor erythroid-2 related factor 2-BTB-Kelch-like ECH-associated protein 1,Nrf2-Keap1)、沉默交配型信息调节因子2同源蛋白1(silent mating type information regulation 2 homolog 1,Sirt1)等信号通路]清除活性氧,同时抑制其他促进氧化应激的信号通路[如核转录因子κB(nuclear factor-kappa B,NF-κB)、糖基化终末产物(advanced glycation end products,AGE)等],抑制活性氧的作用,最终减缓甚至阻止氧化应激,有效预防和治疗如神经系统、视网膜、心血管、肝脏等组织器官的病变。笔者整理归纳了鼠尾草酸对氧化应激相关疾病的调节机制,为推进鼠尾草酸临床应用的转化提供参考。
Abstract:Oxidative stress could destroy the structures and functions of many biological molecules (such as nucleic acids,proteins,lipids) and undermine many physiological activities,such as gene expression regulation,cell signal transduction,substance uptake and intracellular transport,thus leading to many tissue and organ pathological damages. Carnosic acid,rich in rosemary (Rosmarinus officinalis L.),could retard or prevent oxidative stress by activating the cellular antioxidant system (such as Nrf2-Keap1,Sirt1 signaling pathway) or inhibiting pro-oxidant signaling pathways (such as NF-κB,AGEs,etc.) to scavenge reactive oxygen species. It exhibits favorable effects on the prevention and treatment of oxidative stress-related diseases involving nervous system,retina,cardiovascular,liver,etc. The modulation mechanisms of carnosic acid on these diseases are summarized in this review,which shall provide a reference for promoting the clinical applications of carnosic acid.
罗成, 谭新敏, 李艳. 鼠尾草酸的体内氧化应激调节作用研究进展[J]. 中国药学杂志, 2020, 55(7): 493-497.
LUO Cheng, TAN Xin-min, LI Yan. Progress on Carnosic Acid as a Modulator of Oxidative Stress in Vivo. Chinese Pharmaceutical Journal, 2020, 55(7): 493-497.
CHEN Q, WANG Q, ZHU J, et al. Reactive oxygen species:key regulators in vascular health and diseases[J]. Br J Pharmacol, 2018, 175(8):1279-1292.
[2]
CHOI H Y, LEE J H, JEGAL K H, et al. Oxyresveratrol abrogates oxidative stress by activating Erk-Nrf2 pathway in the liver[J]. Chem Biol Interact, 2016, 245:110-121.
[3]
TALEB A, AHMAD K A, IHSAN A U, et al. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases[J]. Biomed Pharmacother, 2018, 102:689-698.
[4]
CADET J, DAVIES K J A. Oxidative DNA damage & repair: an introduction[J]. Free Radic Biol Med, 2017, 107:2-12.
[5]
MENG P, YOSHIDA H, TANJI K, et al. Carnosic acid attenuates apoptosis induced by amyloid-beta 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells[J]. Neurosci Res, 2015, 94:1-9.
[6]
CHAE I G, YU M H, IM N K, et al. Effect of rosemarinus officinalisl. On MMP-9, MCP-1 levels, and cell migration in RAW 264.7 and smooth muscle cells[J]. J Med Food, 2012, 15(10):879-886.
[7]
LIU K L, KUO W C, LIN C Y, et al. Prevention of 4-hydroxynonenal-induced lipolytic activation by carnosic acid is related to the induction of glutathione s-transferase in 3t3-l1 adipocytes[J]. Free Radic Biol Med, 2018, 121:1-8.
[8]
SHAN W, GAO L, ZENG W, et al. Activation of the Sirt1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease[J]. Cell Death Dis, 2015, 6:e1833.
[9]
KOCAK C, KOCAK F E, AKCILAR R, et al. Molecular and biochemical evidence on the protective effects of embelin and carnosic acid in isoproterenol-induced acute myocardial injury in rats[J]. Life Sci, 2016, 147:15-23.
[10]
PARK M, HAN J, LEE C S, et al. Carnosic acid, a phenolic diterpene from rosemary, prevents uv-induced expression of matrix metalloproteinases in human skin fibroblasts and keratinocytes[J]. Exp Dermatol, 2013, 22(5):336-341.
[11]
ALBALAWI A, ALHASANI R H A, BISWAS L, et al. Protective effect of carnosic acid against acrylamide-induced toxicity in RPE cells[J]. Food Chem Toxicol, 2017, 108:543-553.
[12]
OU J, HUANG J, WANG M, et al. Effect of rosmarinic acid and carnosic acid on AGEs formation in vitro[J]. Food Chem, 2017, 221:1057-1061.
[13]
LIN C, ZHANG X, XIAO J, et al. Effects on longevity extension and mechanism of action of carnosic acid in caenorhabditis elegans[J]. Food & Function, 2019, 10(3):1398-1410.
[14]
TONG X P, MA Y X, QUAN D N, et al. Rosemary extracts upregulate Nrf2, Sestrin2, and MRP2 protein level in human hepatoma HepG2 cells[J]. Evid Based Complement Alternat Med, 2017, 2017:7359806.
[15]
HAN N-N, ZHOU Q, HUANG Q, et al. Carnosic acid cooperates with tamoxifen to induce apoptosis associated with caspase-3 activation in breast cancer cells in vitro and in vivo[J]. Biomed Pharmacother, 2017, 89:827-837.
[16]
ARMAGAN G, SEVGILI E, GURKAN F T, et al. Regulation of the Nrf2 pathway by glycogen synthase kinase-3beta in MPP(+)-induced cell damage[J]. Molecules, 2019, 24(7)pii:E1377.
[17]
AHMED S M, LUO L, NAMANI A, et al. Nrf2 signaling pathway: pivotal roles in inflammation[J]. Biochim Biophys Acta, 2017, 1863(2):585-597.
[18]
XIAO Q, PIAO R, WANG H, et al. Orientin-mediated Nrf2/HO-1 signal alleviates H2O2-induced oxidative damage via induction of JNK and PI3K/Akt activation[J]. Int J Biol Macromol, 2018, 118:747-755.
[19]
LV H, LIU Q, ZHOU J, et al. Daphnetin-mediated Nrf2 antioxidant signaling pathways ameliorate tert-butyl hydroperoxide (t-BHP)-induced mitochondrial dysfunction and cell death[J]. Free Radic Biol Med, 2017, 106:38-52.
[20]
SATOH T, KOSAKA K, ITOH K, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1[J]. J Neurochem, 2008, 104(4):1116-1131.
[21]
SILVA J, ALVES C, PINTEUS S, et al. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model[J]. BMC Complement Altern Med, 2018, 18:58.
[22]
CHEN J H, OU H P, LIN C Y, et al. Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis[J]. Chem Res Toxicol, 2012, 25(9):1893-1901.
[23]
DE OLIVEIRA M R, FERREIRA G C, SCHUCK P F, et al. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells[J]. Chem Biol Interact, 2015, 242:396-406.
[24]
MILLER D M, SINGH I N, WANG J A, et al. Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice[J]. Exp Neurol, 2015, 264:103-110.
[25]
CAMPOCHIARO P A, MIR T A. The mechanism of cone cell death in retinitis pigmentosa[J]. Prog Retin Eye Res, 2018, 62:24-37.
[26]
KANG K, TARCHICK M J, YU X, et al. Carnosic acid slows photoreceptor degeneration in the Pde6b(rd10) mouse model of retinitis pigmentosa[J]. Sci Rep, 2016, 6:22632.
[27]
REZAIE T, MCKERCHER S R, KOSAKA K, et al. Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2012, 53(12):7847-7854.
[28]
DING R B, BAO J, DENG C X. Emerging roles of Sirt1 in fatty liver diseases[J]. Int J Biol Sci, 2017, 13(7):852-867.
[29]
DING M, HU L, YANG H, et al. Reduction of sirt1 blunts the protective effects of ischemic post-conditioning in diabetic mice by impairing the akt signaling pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2019,1865(6):1677-1689.
[30]
GAO L, SHAN W, ZENG W, et al. Carnosic acid alleviates chronic alcoholic liver injury by regulating the Sirt1/ChREBP and Sirt1/p66shc pathways in rats[J]. Mol Nutr Food Res, 2016, 60(9):1902-1911.
[31]
NORIEGA L G, FEIGE J N, CANTO C, et al. CREB and ChREBP oppositely regulate Sirt1 expression in response to energy availability[J]. EMBO Rep, 2011, 12(10):1069-1076.
[32]
KONG X, GUAN J, LI J, et al. P66(shc)-Sirt1 regulation of oxidative stress protects against cardio-cerebral vascular disease[J]. Mol Neurobiol, 2017, 54(7):5277-5285.
[33]
YUAN Y, WANG H, WU Y, et al. P53 contributes to cisplatin induced renal oxidative damage via regulating p66shc and MnSOD[J]. Cell Physiol Biochem, 2015, 37(4):1240-1256.
[34]
ZAKHARI S. Overview:how is alcohol metabolized by the body[J]. Alcohol Res Health, 2006, 29(4):245-254.
[35]
WANG R H, LI C, DENG C X. Liver steatosis and increased ChREBP expression in mice carrying a liver specific Sirt1 null mutation under a normal feeding condition[J]. Int J Biol Sci, 2010, 6(7):682-690.
[36]
GOURANTON E, ROMIER B, MARCOTORCHINO J, et al. Visfatin is involved in TNFα-mediated insulin resistance via an NAD(+)/Sirt1/PTP1B pathway in 3T3-L1 adipocytes[J]. Adipocyte, 2014, 3(3):180-189.
[37]
JIAO D, ZHANG H, JIANG Z, et al. MicroRNA-34a targets sirtuin 1 and leads to diabetes-induced testicular apoptotic cell death[J]. J Mol Med (Berl), 2018, 96(9):939-949.
[38]
LI J S, CHEN Z Y, HONG W. Effect of vitamin E on the expression of SIRT1 and PGC-1α in mice with nonalcoholic fatty liver disease[J]. Chin Pharm J (中国药学杂志), 2017, 52(12):1029-1033.
[39]
WANG T, TAKIKAWA Y. Carnosic acid protects normal mouse hepatocytes against H2O2-induced cytotoxicity via sirtuin 1-mediated signaling[J]. Hepatol Res, 2016, 46(2):239-246.
[40]
DAHL T B, HOLM S, AUKRUST P, et al. Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology[J]. Annu Rev Nutr, 2012, 32:229-243.
[41]
ZHAO Y, SHI X, DING C, et al. Carnosic acid prevents COL1A2 transcription through the reduction of Smad3 acetylation via the AMPKα1/Sirt1 pathway[J]. Toxicol Appl Pharmacol, 2018, 339:172-180.
[42]
HE Y, FENG D, LI M, et al. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice[J]. Hepatology, 2017, 66(1):220-234.
[43]
CHANG S H, MORI D, KOBAYASHI H, et al. Excessive mechanical loading promotes osteoarthritis through the gremlin-1-nf-κb pathway[J]. Nat Commun, 2019, 10(1):1442.
[44]
LI C, CHEN T, ZHOU H, et al. Schisantherin a attenuates neuroinflammation in activated microglia: role of Nrf2 activation through ERK phosphorylation[J]. Cell Physiol Biochem, 2018, 47(5):1769-1784.
[45]
WU Z, WANG Y, MENG X, et al. Total c-21 steroidal glycosides, isolated from the root tuber of cynanchum auriculatum royle ex wight, attenuate hydrogen peroxide-induced oxidative injury and inflammation in l02 cells[J]. Int J Mol Med, 2018, 42(6):3157-3170.
[46]
LI Z W, HUANG J J, YANG W H. Interactive molecular mechanism between Nrf2 and NF-κB pathways in drug induced liver injury[J]. Chin Pharm J(中国药学杂志), 2018, 53(9):666-670.
[47]
YU Y M, LIN H C, CHANG W C. Carnosic acid prevents the migration of human aortic smooth muscle cells by inhibiting the activation and expression of matrix metalloproteinase-9[J]. Br J Nutr, 2008, 100(4):731-738.
[48]
YU Y M, LIN C H, CHAN H C, et al. Carnosic acid reduces cytokine-induced adhesion molecules expression and monocyte adhesion to endothelial cells[J]. Eur J Nutr, 2009, 48(2):101-106.
[49]
LIU M, ZHOU X, ZHOU L, et al. Carnosic acid inhibits inflammation response and joint destruction on osteoclasts, fibroblast-like synoviocytes, and collagen-induced arthritis rats[J]. J Cell Physiol, 2018, 233(8):6291-6303.
[50]
XIA G, WANG X, SUN H, et al. Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 pathway[J]. Free Radic Biol Med, 2017, 108:418-432.
[51]
VAN DOOREN F E, POUWER F, SCHALKWIJK C G, et al. Advanced glycation end product (AGE) accumulation in the skin is associated with depression: the maastricht study[J]. Depress Anxiety, 2017, 34(1):59-67.
[52]
WANG Z Q, JING L L, YAN J C, et al. Role of AGEs in the progression and regression of atherosclerotic plaques[J]. Glycoconj J, 2018, 35(5):443-450.
[53]
LIN C Y, TSAI C W. Carnosic acid attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells by inducing autophagy through an enhanced interaction of Parkin and Beclin1[J]. Mol Neurobiol, 2017, 54(4):2813-2822.
[54]
HAN G E, KANG H T, CHUNG S, et al. Novel neohesperidin dihydrochalcone analogue inhibits adipogenic differentiation of human adipose-derived stem cells through the Nrf2 pathway[J]. Int J Mol Sci, 2018, 19(8):2215.
[55]
GAYA M, REPETTO V, TONEATTO J, et al. Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program[J]. Biochim Biophys Acta, 2013, 1830(6):3796-3806.
[56]
PARK M Y, SUNG M K. Carnosic acid inhibits lipid accumulation in 3T3-L1 adipocytes through attenuation of fatty acid desaturation[J]. J Cancer Prev, 2015, 20(1):41-49.
[57]
TSAI C W, LIU K L, LIN Y R, et al. The mechanisms of carnosic acid attenuates tumor necrosis factor-α-mediated inflammation and insulin resistance in 3T3-L1 adipocytes[J]. Mol Nutr Food Res, 2014, 58(4):654-664.