Recently, drug-loading microspheres prepared from biodegradable polymers have attracted great attentions. It is a hot topic in the research of pharmaceutical preparations because it can be used to control release of the drug. The selection of suitable polymer materials and production technology are the key factors for preparing sustained release microspheres. With the launching of many control release microspheres, the technology has been developed into a mature technology, and it has been shown to be controllable and industrialized. This paper mainly introduces the industrialized production technology of microspheres and some new technologies for preparing microspheres, as well as the drugs that have been marketed.
李想, 孙考祥, 李又欣. 长效微球制剂产业化研究进展[J]. 中国药学杂志, 2019, 54(21): 1729-1733.
LI Xiang, SUN Kao-xiang, LI You-xin. Progress in the Industrialization of Sustained-release Microsphere. Chinese Pharmaceutical Journal, 2019, 54(21): 1729-1733.
QI F, WU J, LI H, et al. Recent research and development of PLGA/PLA microspheres/nanoparticles: a review in scientific and industrial aspects[J]. Front Chem Sci Eng, 2019,13(1):14-17.
[2]
WANG Y J, SUN X Z, XU L, et al. Research progress and prospect of microsphere product[J]. Biol Chem Eng, 2017, 3(2):80-83.
[3]
OKADA H. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate[J]. Adv Drug Deliv Rev, 1997, 28(1):43-70.
[4]
WANG A P, WANG L X, SUN K X, et al. Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats[J]. Pharm Res, 2012, 29(9):2367-2376.
[5]
WAN F, YANG M S. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying[J]. Int J Pharm, 2016, 498(1-2):82-95.
[6]
QI F, WU J, YANG T Y, et al. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification[J]. Acta Biomater, 2014, 10(10):4247-4256.
[7]
JAIN R A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices[J]. Biomaterials, 2000, 21(23):2475-2490.
[8]
EDELMAN R, RUSSELL R G, LOSONSKY G, et al. Immunization of rabbits with enterotoxigenic E. coli colonization factor antigen (CFA/I) encapsulated in biodegradable microspheres of poly (lactide-co-glycolide)[J]. Vaccine, 1993, 11(2):155-158.
[9]
AWWAD S, DAY R M, KHAW P T, et al. Sustained release ophthalmic dexamethasone: in vitro in vivo correlations derived from the PK-Eye[J]. Int J Pharm, 2017, 522(1):119-127.
[10]
DAVID B, FONG J W, THOMAS K, et al. Sustained release formulations of water soluble peptides: United States, US19950470909[P]. 19960606.
[11]
TAKADA S, UDA Y, TOGUCHI H, et al. Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers[J]. PDA J Pharm Sci Technol, 1995, 49(4):180-184.
[12]
ARSHADY R. Preparation of biodegradable microspheres and microcapsules.2. Polyactides and related polyesters[J]. J Controlled Release, 1991, 17(1):1-21.
[13]
ALONSO M J, GUPTA R K, MIN C, et al. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems[J]. Vaccine, 1994, 12(4):299-306.
[14]
SINGH M, SINGH O, TALWAR G P. Biodegradable delivery system for a birth control vaccine: immunogenicity studies in rats and monkeys[J]. Pharm Res, 1995, 12(11):1796-1800.
[15]
BAUMANN A, JEELANI S A K, HOLENSTEIN B, et al. Flow regimes and drop break-up in SMX and packed bed static mixers[J]. Chem Eng Sci, 2012, 73(19):354-365.
[16]
WISCHKE C, LORENZEN D, ZIMMERMANN J, et al. Preparation of protein loaded poly(,-lactide-co-glycolide) microparticles for the antigen delivery to dendritic cells using a static micromixer[J]. Eur J Pharm Biopharm, 2006, 62(3):247-253.
[17]
MEIJER H, SINGH M, ANDERSON P. On the performance of static mixers: a quantitative comparison[J]. Prog Poly Sci, 2012, 37(10):1333-1349.
[18]
KISS N, BRENN G, PUCHER H, et al. Formation of O/W emulsions by static mixers for pharmaceutical applications[J]. Chem Eng Sci, 2011, 66(21):5084-5094.
[19]
DARKO M K, WILHELM H, ANDRAS K K, et al. Energy-saving potential of cross-flow ultrafiltration with inserted static mixer: application to an oil-in-water emulsion[J]. Separ Purific Technol, 2007, 57(1):134-139.
[20]
REPKA M A, BATTU S K, UPADHYE S B, et al. Pharmaceutical applications of hot-melt extrusion part Ⅱ[J]. Drug Dev Commun, 2007, 33(9):1043-1057.
[21]
BAKRI S J, OMAR A F. Evolution of vitreomacular traction following the use of the dexamethasone intravitreal implant (Ozurdex) in the treatment of macular edema secondary to central retinal vein occlusion[J]. J Ocular Pharmacol Ther, 2012, 28(5):547-549.
[22]
ZHAO Z X, FU W, LIU Z P, et al. Biodegradable triptorelin microsphere prepared by hot-melt-extrusion[J]. Chin J Mod Appl Pharm(中国现代应用药学), 2016, 33(12):1533-1538.
[23]
GUO Y T, YANG Y N, HE L Y, et al. Injectable sustained-release depots of PLGA microspheres for insoluble drugs prepared by hot-melt extrusion[J]. Pharm Res, 2017, 34(10):2211-2222.
[24]
BODICK N, BLANKS R C, KUMAR A, et al. Ccorticosteroids for the treatment of joint pain: United States, WO2011US46601[P]. 20120209.
[25]
ZHU C N, HUANG Y, ZHANG X Y, et al. Comparative studies on exenatide-loaded poly (d,l-lactic-co-glycolic acid) microparticles prepared by a novel ultra-fine particle processing system and spray drying[J]. Colloids Surf B: Biointerfaces, 2015, 132: 103-110.
[26]
BOHR A, BOETKER J P, RADES T, et al. Application of spray-drying and electrospraying/electospinning for poorly watersoluble drugs: a particle engineering approach[J]. Curr Pharm Des, 2014, 20(3):325-348.
[27]
ZHANG H D. Preparation and characterization of Monodisperse PLGA Magnetic Microspheres Based on Microchannel Device[D]. Shanghai: Donghua University, 2015.
[28]
WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368-373.
[29]
CHENG D, CHEN F E. Progress in applied research of the continuous-flow micro-reaction technology in drug synthesis[J]. Chem Ind Eng Prog, 2019, 38(1):556-575.
[30]
SHI Y. Preparation of the Spherical CL-20 Based on the Microfluidic Technology[D]. Mianyang: Southwest University of Science and Technology,2018.
[31]
JAFARIFAR E, HAJIALYANI M, AKBARI M, et al. Preparation of a reproducible long acting formulation of risperidone-loaded PLGA microspheres using microfluidic method[J]. Pharm Devel Technol, 2016, 22(6):836-843.
[32]
NISISAKO T, TORII T, HIGUCHI T. Novel microreactors for functional polymer beads[J]. Chem Eng J, 2004, 101(1):2329.
[33]
KAWAKATSU T, TRÄGÄRDH G, TRÄGÄRDH C, et al. Production of W/O/W emulsions and S/O/W pectin microcapsules by microchannel emulsification[J]. Colloids Surf A Physicochem Eng Aspect, 2001, 189(1):257-264.
[34]
CHU L Y, UTADA A S, SHAH R K, et al. Controllable monodisperse multiple emulsions[J]. Angew Chem Int Ed Engl, 2010, 46(47):8970-8974.
[35]
YANG C H, HUANG K S, LIN P W, et al. Using a cross-flow microfluidic chip and external crosslinking reaction for monodisperse TPP-chitosan microparticles[J]. Sensors Actuators B Chem, 2007, 124(2):510-516.
[36]
HUANG S H, KHOO H S, SHANG C C, et al. Synthesis of bio-functionalized copolymer particles bearing carboxyl groups via a microfluidic device[J]. Microfluidics Nanofluidics, 2008, 5(4):459-468.
[37]
SEO M, NIE Z, XU S, et al. Continuous microfluidic reactors for polymer particles[J]. Langmuir, 2005, 21(25):11614-11622.
[38]
DENDUKURI D, TSOI K, HATTON T A, et al. Controlled synthesis of nonspherical microparticles using microfluidics[J]. Langmuir, 2005, 21(6):2113-2116.
[39]
MA G. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications[J]. J Controlled Release, 2014, 193: 324340.
[40]
WEI Y, GONG F L, CUI Y M, et al. Research progress of sustained-release microspheres prepared by membrane emulsification technique[J]. Chin J Pharm(中国医药工业杂志), 2018, 49(10):1341-1352.