Abstract:Heparin has been used as first-line anticoagulant clinically for 80 years. Heparin mainly exerts its anticoagulant activity through interaction with ATⅢ. It has been found there are more than one hundred heparin-dependent functional proteins which demonstrates promising novel application beyond anticoagulant, such as anti-tumor, anti-malaria anti-inflammation, anti-viral, anti-malaria anti-anemia, etc. Heparin is also hopeful to be used as tool for drug delivery vehicle and functionalized implants material. In addition, heparin oligosaccharides are expected to be produced by chemical/enzymatic and bioengineering synthesis. Above mentioned new developments of heparin are covered in this review.
PAGE C. Heparin and related drugs: beyond anticoagulant activity[J]. ISRN Pharmacol, 2013:910743. doi:10.1155/2013/910743.
[2]
LIMA M, RUDD T, YATES E. New applications of heparin and other glycosaminoglycans[J]. Molecules, 2017, 22(5):749.
[3]
BARROWCLIFFE T W. History of Heparin [M]. Berlin Heidelberg:Springer Berlin Heidelberg, 2012:3-22.
[4]
NAKAMURA M, YAMADA N, ITO M. Novel anticoagulant therapy of venous thromboembolism: current status and future directions[J]. Ann Vasc Dis, 2017, 10(2):92-98.
[5]
ZHAO J, LIU X, MALHOTRA A, et al. Novel method for measurement of heparin anticoagulant activity using SPR[J]. Anal Biochem, 2017, 526(6): 39-42.
[6]
AVCI F Y, KARST N A, LINHARDT R J. Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties[J]. Curr Pharm Des, 2003, 9 (28):2323-2335.
[7]
INGLE R G, AGARWAL A S. A world of low molecular weight heparins (LMWHs) enoxaparin as a promising moiety--a review[J]. Carbohydr Polym, 2014, 106: 148-153.
[8]
RAUOVA L, PONCZ M, MCKENZIE S E, et al. Ultralarge complexes of PF4 and heparin are central to the pathogenesis of heparin-induced thrombocytopenia[J]. Blood, 2005, 105 (1):131-138.
[9]
LEROUX D, CANEPA S, VISKOV C, et al. Binding of heparin-dependent antibodies to PF4 modified by enoxaparin oligosaccharides: evaluation by surface plasmon resonance and serotonin release assay[J]. J Thromb Haemost, 2012, 10 (3):430-436.
[10]
PAPY-GARCIA D, ALBANESE P. Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells[J]. Glycoconj J, 2017, 34 (3):377-391.
[11]
RICARD-BLUM S. Protein-glycosaminoglycan interaction networks: focus on heparan sulfate[J]. Perspect Sci, 2017, 11: 62-69.
[12]
KJELLEN L, LINDAHL U. Specificity of glycosaminoglycan-protein interactions[J]. Curr Opin Struct Biol, 2018, 50: 101-108.
[13]
HARRIS N, KOGAN F Y, IL′KOVA G, et al. Small molecule inhibitors of protein interaction with glycosaminoglycans (SMIGs), a novel class of bioactive agents with anti-inflammatory properties[J]. Biochim Biophys Acta (BBA)-Gen Sub, 2014, 1840 (1):245-254.
[14]
POMIN V H. Sulfated glycans in inflammation[J]. Eur J Med Chem, 2015, 92: 353-369.
[15]
POLI M, ASPERTI M, NAGGI A, et al. Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo[J]. Blood, 2014, 123 (10):1564-1573.
[16]
WANG X X.The development of new drug targeting hepcidin[J]. Chin Pharm J(中国药学杂志),2018, 53(6):405-410.
[17]
LEAN Q Y, ERI R D, RANDALL-DEMLLO S, et al. Orally administered enoxaparin ameliorates acute colitis by reducing macrophage-associated inflammatory responses[J]. PLoS One, 2015, 10 (7):e0134259.
[18]
HUANG J N, TSAI M C, FANG S L, et al. Low-molecular-weight heparin and unfractionated heparin decrease Th-1, 2, and 17 expressions[J]. PLoS One, 2014, 9 (11):e109996.
[19]
XIAO Y, XU C, XIONG H, et al. Dose-reduction antiangiogenic curcumin-low molecular weight heparin nanodrugs for enhanced combinational antitumor therapy[J]. Eur J Pharm Sci, 2018, 119: 121-134.
[20]
FOLKMAN J. Regulation of angiogenesis: a new function of heparin[J]. Biochem Pharmacol, 1985, 34 (7):905-909.
[21]
BHAKUNI T, ALI M F, AHMAD I, et al. Role of heparin and non heparin binding serpins in coagulation and angiogenesis: a complex interplay[J]. Arch Biochem Biophys, 2016, 604: 128-142.
[22]
NADIR Y, BRENNER B. Novel strategies of coagulation inhibition for reducing tumor growth and angiogenesis[J]. Thromb Res, 2018, 164(suppl 1):153-156.
[23]
HEYMAN B, YANG Y. Mechanisms of heparanase inhibitors in cancer therapy[J]. Exp Hematol, 2016, 44 (11):1002-1012.
[24]
CASU B, VLODAVSKY I, SANDERSON R D. Non-anticoagulant heparins and inhibition of cancer[J]. Pathophysiol Haemost Thromb, 2008, 36 (3-4):195-203.
[25]
ZHOU H, ROY S, COCHRAN E, et al. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis[J]. PLoS One, 2011, 6 (6):e21106.
[26]
O′REILLY E M, ROACH J, MILLER P, et al. Safety, pharmacokinetics, pharmacodynamics, and antitumor activity of necuparanib combined with nab-paclitaxel and gemcitabine in patients with metastatic pancreatic cancer: phase I results[J]. Oncologist, 2017, 22 (12):1429-e139.
[27]
MACDONALD A, PRIESS M, CURRAN J, et al. Necuparanib, a multitargeting heparan sulfate mimetic, targets tumor and stromal compartments in pancreatic cancer[J]. Mol Cancer Ther, 2019, 18 (2):245-256.
[28]
PALA D, RIVARA S, MOR M, et al. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase[J]. Glycobiology, 2016, 26 (6):640-654.
[29]
MILLER L H, ACKERMAN H C, SU X Z, et al. Malaria biology and disease pathogenesis: insights for new treatments[J]. Nat Med, 2013, 19 (2):156-167.
[30]
DONDORP A M, INCE C, CHARUNWATTHANA P, et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria[J]. J Infect Dis, 2008, 197 (1):79-84.
[31]
FRANCISCHETTI I M B, SEYDEL K B, MONTEIRO R Q, et al. Plasmodium falciparum-infected erythrocytes induce tissue factor expression in endothelial cells and support the assembly of multimolecular coagulation complexes[J]. J Thromb Haemost, 2007, 5 (1):155-165.
[32]
TAOUFIQ Z, GAY F, BALVANYOS J, et al. Rho kinase inhibition in severe malaria: thwarting parasite-induced collateral damage to endothelia[J]. J Infect Dis, 2008, 197 (7):1062-1073.
[33]
CABRALES P, ZANINI G M, MEAYS D, et al. Murine cerebral malaria is associated with a vasospasm-like microcirculatory dysfunction, and survival upon rescue treatment is markedly increased by nimodipine[J]. Am J Pathol, 2010, 176 (3):1306-1315.
[34]
TELEN M J, BATCHVAROVA M, SHAN S, et al. Sevuparin binds to multiple adhesive ligands and reduces sickle red blood cell-induced vaso-occlusion[J]. Br J Haematol, 2016, 175 (5):935-948.
[35]
SAIWAEW S, SRITABAL J, PIARAKSA N, et al. Effects of sevuparin on rosette formation and cytoadherence of plasmodium falciparum infected erythrocytes[J]. PLoS One, 2017, 12 (3):e0172718.
[36]
LINDGREN M, MEIJERS J C M, BIEMOND B J, et al. Sevuparin; effects on hemostasis of a novel polysaccharide drug derived from heparin [C]. Wiley-black, Hoboken, NJ USA, 2015:369.
[37]
LEMBO D, DONALISIO M, LAINE C, et al. Auto-associative heparin nanoassemblies: a biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV[J]. Eur J Pharm Biopharm, 2014, 88 (1):275-282.
[38]
WASIK D, MULCHANDANI A, YATES M V. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus[J]. Biosens Bioelectron, 2017, 91: 811-816.
[39]
HENDRICKS G L, VELAZQUEZ L, PHAM S, et al. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses[J]. Antiviral Res, 2015, 116: 34-44.
[40]
SEKI Y, MIZUKURA M, ICHIMIYA T, et al. O-sulfate groups of heparin are critical for inhibition of ecotropic murine leukemia virus infection by heparin[J]. Virology, 2012, 424 (1):56-66.
[41]
LERCH T F, CHAPMAN M S. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)[J]. Virology, 2012, 423 (1):6-13.
[42]
PASQUATO A, DETTIN M, BASAK A, et al. Heparin enhances the furin cleavage of HIV-1 gp160 peptides[J]. FEBS Lett, 2007, 581 (30):5807-5813.
[43]
MBEMBA E, CZYRSKI J A, GATTEGNO L. The interaction of a glycosaminoglycan heparin, with HIV-1 major envelope glycoprotein[J]. Biochim Biophys Acta (BBA), Mol Basis Dis, 1992, 1180 (2):123-129.
[44]
VENKATACHALAPATHY T S. A comparative study of paediatric thermal burns treated with topical heparin and without heparin[J]. Indian J Surg, 2014, 76 (4):282-287.
[45]
YERGOZ F, HASTAR N, CIMENCI C E, et al. Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury[J]. Biomaterials, 2017, 134: 117-127.
[46]
DAO D T, ANEZ-BUSTILLOS L, ADAM R M, et al. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) as a critical mediator of tissue repair and regeneration[J]. Am J Pathol, 2018,188(11):2446-2456.
[47]
MARTINO M M, BRIQUEZ P S, RANGA A, et al. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix[J]. Proc Nat Acad Sci USA, 2013, 110 (12):4563-4568.
[48]
CHOI W I, SAHU A, VILOS C, et al. Bioinspired heparin nanosponge prepared by photo-crosslinking for controlled release of growth factors[J]. Sci Rep, 2017, 7 (1):14351.
[49]
FARWELL S L N, KANYI D, HAMEL M, et al. Heparin decreases in tumor necrosis factor α (TNFα)-induced endothelial stress responses require transmembrane protein 184A and induction of dual specificity phosphatase 1[J]. J Biol Chem, 2016, 291 (10):5342-5354.
[50]
LI R, LI D H, QUAN D P, et al. Novel thermosensitive heparin-poloxamer hydrogel bridge NGF to treat peripheral nerve injury in diabetics rats[J]. Chin Pharm J(中国药学杂志),2019, 54(12):992-999.
[51]
LI G, XIAO Q, ZHANG L, et al. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration[J]. Carbohydr Polym, 2017, 171:39-49.
[52]
RIDER C C, MULLOY B. Heparin, heparan sulphate and the TGF-beta cytokine superfamily[J]. Molecules, 2017, 22 (5):713.
[53]
ZHANG R, TU Y, ZHAO M, et al. Preparation of bioniccollagen-heparin sulfate spinal cord scaffold with three-dimensional print technology[J]. Chin J Repar Reconstr Surg(中国修复重建外科杂志), 2015, 29 (8):1022.
ANSARI J, GAVINS F N E. Ischemia-reperfusion injury in sickle cell disease: from basics to therapeutics[J]. Am J Pathol, 2019, 189 (4):706-718.
[56]
LI J, FENG X, LIU B, et al. Polymer materials for prevention of postoperative adhesion[J]. Acta Biomater, 2017, 61: 21-40.
[57]
WU W, CHENG R, DAS NEVES J, et al. Advances in biomaterials for preventing tissue adhesion[J]. J Controlled Release, 2017, 261: 318-336.
[58]
KUTLAY J, OZER Y, ISIK B, et al. Comparative effectiveness of several agents for preventing postoperative adhesions[J]. World J Surg, 2004, 28 (7):662-665.
[59]
KEMENT M, CENSUR Z, ONCEL M, et al. Heparin for adhesion prevention: comparison of three different dosages with seprafilm in a murine model[J]. Int J Surg, 2011, 9 (3):225-228.
[60]
DOCHERTY J R, MCCORMICK P A. A carboxymethylcellulose-heparin combination for the prevention of surgical adhesions[J]. J Surg Res, 2017, 213: 228-233.
[61]
MULLOY B. The non-anticoagulant promise of heparin and its mimetics[J]. Curr Opin Pharmacol, 2019, 46: 50-54.
[62]
AHMED T, GARRIGO J, DANTA I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin[J]. New Engl J Med, 1993, 329 (2):90-95.
[63]
GARRIGO J, DANTA I, AHMED T. Time course of the protective effect of inhaled heparin on exercise-induced asthma[J]. Am J Respir Crit Care Med, 1996, 153 (5):1702-1707.
[64]
SHUTE J K, CALZETTA L, CARDACI V, et al. Inhaled nebulised unfractionated heparin improves lung function in moderate to very severe COPD: a pilot study[J]. Pulm Pharmacol Ther, 2018, 48: 88-96.
[65]
YILDIZ-PEKOZ A, OZSOY Y. Inhaled heparin: therapeutic efficacy and recent formulations[J]. J Aerosol Med Pulm Drug Deliv, 2017, 30 (3):143-156.
[66]
BIRAN R, POND D. Heparin coatings for improving blood compatibility of medical devices[J]. Adv Drug Deliv Rev, 2017, 112: 12-23.
[67]
WU Y B, LI K, XIANG D, et al. Surface immobilization of heparin on functional polyisobutylene-based thermoplastic elastomer as a potential artificial vascular graft[J]. Appl Surf Sci, 2018, 445: 8-15.
[68]
DIMITRIEVSKA S, CAI C, WEYERS A, et al. Click-coated, heparinized, decellularized vascular grafts[J]. Acta Biomater, 2015, 13: 177-187.
[69]
ZHAO J, CHEN Y, YANG S, et al. Improving blood-compatibility via surface heparin-immobilization based on a liquid crystalline matrix[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 133-141.
[70]
PATIL R M, THORAT N D, SHETE P B, et al. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles[J]. Biochem Biophys Rep, 2018, 13: 63-72.
[71]
TERNENT L, MAYOH D A, LEES M R, et al. Heparin-stabilised iron oxide for MR applications: a relaxometric study[J]. J Mater Chem B, 2016, 4 (18):3065-3074.
[72]
HWANG Y H, JEONG M J, KIM M J, et al. Enhancement of T 2-weighted MR contrast using heparin for cell tracking in vivo[J]. J Ind Eng Chem, 2017, 55: 183-190.
[73]
MORALES M P, BOMATI-MIGUEL O, PREZ DE ALEJO R, et al. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis[J]. J Magn Magn Mater, 2003, 266 (1-2):102-109.
[74]
WAN X, SONG Y, SONG N, et al. The preliminary study of immune superparamagnetic iron oxide nanoparticles for the detection of lung cancer in magnetic resonance imaging[J]. Carbohydr Res, 2016, 419: 33-40.
[75]
FULOP T, NEMES R, MESZAROS T, et al. Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model: correlation with physicochemical features and clinical information[J]. J Controlled Release, 2018, 270: 268-274.
[76]
JOHNSON N R, WANG Y. Controlled delivery of sonic hedgehog with a heparin-based coacervate[J]. Methods Mol Biol, 2015, 1322: 1-7.
[77]
ZHANG S S, XIA W T, XU J, et al. Three-dimensional structure micelles of heparin-poloxamer improve the therapeutic effect of 17beta-estradiol on endometrial regeneration for intrauterine adhesions in a rat model[J]. Int J Nanomed, 2017, 12: 5643-5657.
[78]
PENG Y, TELLIER L E, TEMENOFF J S. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery[J]. Biomater Sci, 2016, 4 (9):1371-1380.
[79]
SUN W, SALDANA M D, FAN L, et al. Sulfated polysaccharide heparin used as carrier to load hydrophobic lappaconitine[J]. Int J Biol Macromol, 2016, 84: 275-280.
[80]
ZHANG X, QIAO H, CHEN Y, et al. Preparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle[J]. Iran J Pharm Res, 2016, 15 (3):269-282.
[81]
DE BOER A G, BREIMER D D. Hepatic first-pass effect and controlled drug delivery following rectal administration[J]. Adv Drug Deliv Rev, 1997, 28 (2):229-237.
[82]
NEVES A R, CORREIA-DA-SILVA M, SOUSA E, et al. Strategies to overcome heparins′ low oral bioavailability[J]. Pharmaceuticals (Basel), 2016, 9 (3):37.
[83]
AL-HILAL T A, PARK J, ALAM F, et al. Oligomeric bile acid-mediated oral delivery of low molecular weight heparin[J]. J Controlled Release, 2014, 175: 17-24.
[84]
PINEO G F, HULL R D, MARDER V J. Orally active heparin and low-molecular-weight heparin[J]. Curr Opin Pulm Med, 2001, 7 (5):344-348.
[85]
MOUSA S A, ZHANG F, ALJADA A, et al. Pharmacokinetics and pharmacodynamics of oral heparin solid dosage form in healthy human subjects[J]. J Clin Pharmacol, 2007, 47 (12):1508-1520.
[86]
ARBIT E, GOLDBERG M, GOMEZ-ORELLANA I, et al. Oral heparin: status review[J]. Thromb J, 2006, 4: 6.
[87]
HOFFART V, UBRICH N, LAMPRECHT A, et al. Microencapsulation of low molecular weight heparin into polymeric particles designed with biodegradable and nonbiodegradable polycationic polymers[J]. Drug Deliv, 2003, 10 (1):1-7.
[88]
HOFFART V, UBRICH N, SIMONIN C, et al. Low molecular weight heparin-loaded polymeric nanoparticles: formulation, characterization, and release characteristics[J]. Drug Dev Ind Pharm, 2002, 28 (9):1091-1099.
[89]
SOLTANI Y, GOODARZI N, MAHJUB R. Preparation and characterization of self nano-emulsifying drug delivery system (SNEDDS) for oral delivery of heparin using hydrophobic complexation by cationic polymer of beta-cyclodextrin[J]. Drug Dev Ind Pharm, 2017, 43 (11):1899-1907.
[90]
AHN M Y, SHIN K H, KIM D H, et al. Characterization of a bacteroides species from human intestine that degrades glycosaminoglycans[J]. Can J Microbiol, 1998, 44 (5):423-429.
[91]
KIM D H, KIM B T, PARK S Y, et al. Degradation of acharan sulfate and heparin by bacteroides stercoris HJ-15, a human intestinal bacterium[J]. Arch Pharm Res, 1998, 21 (5):576-580.
[92]
LEE H, SONG C, BAIK S, et al. Device-assisted transdermal drug delivery[J]. Adv Drug Deliv Rev, 2018, 127: 35-45.
[93]
ITA K. Transdermal delivery of drugs with microneedles—potential and challenges[J]. Pharmaceutics, 2015, 7 (3):90-105.
[94]
LANKE S S, KOLLI C S, STROM J G, et al. Enhanced transdermal delivery of low molecular weight heparin by barrier perturbation[J]. Int J Pharm, 2009, 365(1-2):26-33.
[95]
ITA K. Transdermal delivery of heparin: physical enhancement techniques[J]. Int J Pharm, 2015, 496 (2):240-249.
[96]
PANDEY P C, SHUKLA S, SKOOG S A, et al. Current advancements in transdermal biosensing and targeted drug delivery[J]. Sensors (Basel), 2019,19(5):1028.
[97]
MONAGLE K, RYAN A, HEPPONSTALL M, et al. Inhalational use of antithrombotics in humans: review of the literature[J]. Thromb Res, 2015, 136 (6):1059-1066.
[98]
CASSINELLI G, NAGGI A. Old and new applications of non-anticoagulant heparin[J]. Int J Cardiol, 2016, 212:14-21.
[99]
GHIASI F, SADEGHIAN M, EMAMI M, et al. A pilot study of nebulized heparin for prevention of ventilator induced lung injury: comparative effects with an inhaled corticosteroid[J]. Indian J Crit Care Med, 2017, 21 (10):634-639.
[100]
FONCERRADA G, CULNAN D M, CAPEK K D, et al. Inhalation injury in the burned patient[J]. Ann Plast Surg, 2018, 80 (3 suppl 2):98-105.
[101]
BHASKAR U, LI G, FU L, et al. Combinatorial one-pot chemoenzymatic synthesis of heparin[J]. Carbohydr Polym, 2015, 122: 399-407.
[102]
MANIKOWSKI A, KOZIOL A, CZAJKOWSKA-WOJCIECHOWSKA E. An alternative route for fondaparinux sodium synthesis via selective hydrogenations and sulfation of appropriate pentasaccharides[J]. Carbohydr Res, 2012, 361: 155-161.
[103]
DING Y, VARA PRASAD C, BAI H, et al. Efficient and practical synthesis of fondaparinux[J]. Bioorg Med Chem Lett, 2017, 27 (11):2424-2427.
[104]
LI B, WANG K, ZHAO X, et al. Comparison of fondaparinux sodium and low molecular weight heparin in the treatment of hypercoagulability secondary to traumatic infection[J]. Chin J Traumatol(中华创伤杂志英文版), 2015, 18 (3):147-149.
[105]
DEANGELIS P L, LIU J, LINHARDT R J. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature′s longest or most complex carbohydrate chains[J]. Glycobiology, 2013, 23 (7):764-777.
[106]
VAIDYANATHAN D, WILLIAMS A, DORDICK J S, et al. Engineered heparins as new anticoagulant drugs[J]. Bioeng Transl Med, 2017, 2 (1):17-30.
[107]
XU Y, MASUKO S, TAKIEDDIN M, et al. Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins[J]. Science, 2011, 334 (6055):498-501.
[108]
XU Y, PEMPE E H, LIU J. Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities[J]. J Biol Chem, 2012, 287 (34):29054-29061.
[109]
XU Y, CAI C, CHANDARAJOTI K, et al. Homogeneous low-molecular-weight heparins with reversible anticoagulant activity[J]. Nat Chem Biol, 2014, 10 (4):248-250.
[110]
XIONG J, BHASKAR U, LI G, et al. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin[J]. J Biotechnol, 2013, 167 (3):241-247.
[111]
ZHANG C, LIU L, TENG L, et al. Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor[J]. Metab Eng, 2012, 14 (5):521-527.
[112]
LORD M S, CHENG B, TANG F, et al. Bioengineered human heparin with anticoagulant activity[J]. Metab Eng, 2016, 38: 105-114.