Application of Nanomedicine in Tumor Immunotherapy
ZHANG Ting-ying1, DAI Xian-hua2,4, HUANG Yong3, TAO Wan-ru3, LI Wei1,2,3*, LIANG Bei-bei2,1,4*
1. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; 3. Department of Nano Medicine, Second Military Medical University of the People′s Liberation Army, Shanghai Key Laboratory of Cell Engineering, Shanghai 200433, China; 4. Shanghai University of Traditional Chinese Medicine, Shanghai 201213, China
Abstract:Despite the breakthrough in tumor immunotherapy, immunotherapy still faces many challenges due to the special tumor heterogeneity and immunosuppressive microenvironment of solid tumors, such as low drug concentration and response rate within the tumor. The advantages of nanomedicine are supposed to overcome the problems in traditional immunotherapy and improve the host immune stimulation signals as well as tumor immunotherapy effect. This paper firstly reviews the application status of nanomedicine in enhancing natural anti-tumor immunity and overcoming tumor inhibitory microenvironment.Their research hotspots and future development trend are further disscussed.
SHARMA P, WAGNER K, WOLCHOK J D, et al. Novel cancer immunotherapy agents with survival benefit:recent successes and next steps[J]. Nat Rev Cancer, 2011, 11(11):805-812.
[2]
SANTONI M, PIVA F, CONTI A, et al. Re: gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Eur Urol, 2018,74(4):521-522.
[3]
SAU S, ALSAAB H O, BHISE K, et al. Multifunctional nanoparticles for cancer immunotherapy: a groundbreaking approach for reprogramming malfunctioned tumor environment[J]. J Controlled Release, 2018, 274:24-34.
[4]
SONG H, SU X, YANG K, et al. CD20 Antibody-conjugated immunoliposomes for targeted chemotherapy of melanoma cancer initiating cells[J]. J Biomed Nanotechnol, 2015, 11(11):1927-1946.
[5]
JIANG W, VON ROEMELING C A, CHEN Y, et al. Designing nanomedicine for immuno-oncology[J]. Nat Biomed Eng, 2017, 1(2):29.
[6]
LI W, LI J, GAO J, et al. The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors[J]. Biomaterials, 2011, 32(15):3832-3844.
[7]
LI W, LI J, GAO J, et al. The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors[J]. Biomaterials, 2011, 32(15):3832-3844.
[8]
WEI L, NAKAYAMA M, AKIMOTO J, et al. Effect of block compositions of amphiphilic block copolymers on the physicochemical properties of polymeric micelles[J]. Polymer, 2011, 52(17):3783-3790.
[9]
ZHU X, SUN Y, CHEN D, et al. Mastocarcinoma therapy synergistically promoted by lysosome dependent apoptosis specifically evoked by 5-Fu@nanogel system with passive targeting and pH activatable dual function[J]. J Controlled Release, 2017, 254:107-118.
[10]
WEI L I. Synthesis and bio-medical application of the intelligent nanogels[J]. Nuclear Techniques, 2002, 25(8):624-630.
[11]
LI W, ZHAO H, QIAN W, et al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles[J]. Biomaterials, 2012, 33(21):5349-5362.
[12]
LI W, WEI H, LI H, et al. Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology[J]. Nanomedicine (London, England), 2014, 9(16):2587-2605.
[13]
WEI L, SISHEN F, YAJUN G. Tailoring polymeric micelles to optimize delivery to solid tumors[J]. Nanomedicine, 2012, 7(8):1235-1252.
[14]
WEI L, QINGCHENIG G, HE Z, et al. Novel dual-control poly(N-isopropylacrylamide-co-chlorophyllin) nanogels for improving drug release[J]. Nanomedicine, 2012, 7(3):383-392.
[15]
XIAO S, HAO S, FANGFANG N, et al. Co-delivery of doxorubicin and PEGylated C16-ceramide by nanoliposomes for enhanced therapy against multidrug resistance[J]. Nanomedicine, 2015, 10(13):2033-2050.
[16]
ANTONIAMMAL P, ARIVUOLI D. Size and shape dependence on melting temperature of gallium nitride nanoparticles[J]. J Nanomater, 2012,(5):3517-3526.
[17]
WEI L, SI-SHEN F, YAJUN G. Block copolymer micelles for nanomedicine[J]. Nanomedicine, 2012, 7(2):169-172.
[18]
BARSOUM I B, KOTI M, SIEMENS D R, et al. Mechanisms of hypoxia-mediated immune escape in cancer[J]. Cancer Res, 2014, 74(24):7185-7190.
[19]
MARTINI D J, LALANI A A, BOSSE D, et al. Response to single agent PD-1 inhibitor after progression on previous PD-1/PD-L1 inhibitors:a case series[J]. J Immu Ther Cancer, 2017, 5(1):66.
[20]
ZHANG F, ZHU X, GONG J, et al. Lysosome-mitochondria-mediated apoptosis specifically evoked in cancer cells induced by gold nanorods[J]. Nanomedicine, 2016, 11(15):1993-2006.
[21]
BISHT S, FELDMANN G, SONI S, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”):a novel strategy for human cancer therapy[J]. J Nanobiotechnol, 2007, 5(1):3.
[22]
SNYDER A, MAKAROV V, MERGHOUB T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma[J]. N Engl J Med, 2014, 372(8):2189-2199.
[23]
CUBILLOSRUIZ J R, ENGLE X, SCARLETT U K, et al. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity[J]. J Clin Invest, 2009, 119(8):2231-2244.
[24]
DUSTIN M L. The Immunological Synapse[J]. Cancer Immunol Res, 2014, 2(11):1023-1033.
[25]
HEO D, KIM T, YONG H, et al. Sustainable oscillating triboelectric nanogenerator as omnidirectional self-powered impact sensor[J]. Nano Energy, 2018, 50:1-8.
[26]
HORIE M, NISHIO K, KATO H, et al. The expression of inflammatory cytokine and heme oxygenase-1 genes in THP-1 cells exposed to metal oxide nanoparticles[J]. J Nano Res, 2015, 30:116-127.
[27]
KAPADIA C H, PERRY J L, TIAN S, et al. Nanoparticulate immunotherapy for cancer[J]. J Controlled Release, 2015, 219:167-180.
[28]
HUTMACHER D W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000, 21(24):2529-2543.
[29]
INOUE K, TAKANO H, YANAGISAWA R, et al. Effects of nano particles on cytokine expression in murine lung in the absence or presence of allergen[J]. Arch Toxicol, 2006, 80(9):614-619.
[30]
WOOD P L, STEINMAN M, EROL E, et al. Lipidomic analysis of immune activation in equine leptospirosis and Leptospira-vaccinated horses[J]. PLoS One, 2018, 13(2):e0193424.
[31]
KULKARNI A, PANDEY P R, RAO P, et al. Algorithm for designing nanoscale supramolecular therapeutics with increased anticancer efficacy[J]. ACS Nano, 2016, 10(9):8154-8168.
[32]
LAMLA T, ERDMANN V A. The nano-tag, a streptavidin-binding peptide for the purification and detection of recombinant proteins[J]. Prot Exp Purifi, 2004, 33(1):39-47.
[33]
LEE I, KWON H, AN S, et al. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo?[J]. Angew Chem, 2012, 51(35):8800-8805.
[34]
LI J, YANG W, CUI R, et al. Metabolizer in vivo of fullerenes and metallofullerenes by positron emission tomography[J]. Nanotechnology, 2016, 27(15):155101.
[35]
MILLER M A, ZHENG Y R, GADDE S, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug[J]. Nat Comm, 2015, 6:8692.
[36]
LIU G, ABRAHAM E. MicroRNAs in immune response and macrphage polarization[J]. Arterioscl Thromb Vascul Biol,2013,33(2):170-177.
[37]
LUNOV O, SYROVETS T, BÜCHELE B, et al. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages[J]. Biomaterials, 2010, 31(19):5063-5071.
[38]
LI W, WEI H, LI H, et al. Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology[J]. Nanomed:Nanotechnol Biol Med, 2014, 9(16):2587-2605.
[39]
LIPSON E J. Re-orienting the immune system: durable tumor regression and successful re-induction therapy using anti-PD1 antibodies[J]. OncoImmunology, 2013, 2(4):e23661.
[40]
LIPSON E J, SHARFMAN W H, DRAKE C G, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody[J]. Clin Cancer Res, 2013, 19(2):462-468.
[41]
GUPTA A K, GUPTA M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005, 26(18):3995-4021.
[42]
NAJJAR M, AGRAWAL S, EMOND J C, et al. Pretreatment neutrophil-lymphocyte ratio:useful prognostic biomarker in hepatocellular carcinoma[J]. J Hepatocell Carcin, 2018, 5:17-28.
[43]
MOLINO N M, ANDERSON A K L, NELSON E L, et al. Biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation[J]. ACS Nano, 2013, 7(11):9743-9752.
[44]
ROBERT C, SORIA J, EGGERMONT A M M. Drug of the year: programmed death-1 receptor/programmed death-1 ligand-1 receptor monoclonal antibodies[J]. Eur J Cancer, 2013, 49(14):2968-2971.
[45]
SALLUSTO F, LANZAVECCHIA A. The instructive role of dendritic cells on T-cell responses[J]. Arth Res Ther, 2002, 4(3):1-6.
[46]
MARIATHASAN S, TURLEY S J, NICKLES D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693):544.
[47]
SCOTTFORDSMAND J J, NAVAS J M, HUNDRINKE K, et al. Nanomaterials to microplastics: swings and roundabouts[J]. Nano Today, 2017, 17:7-10.
[48]
SFANOS K S, YEGNASUBRAMANIAN S, NELSON W G, et al. The inflammatory microenvironment and microbiome in prostate cancer development[J]. Nat Rev Urol, 2018,15(1):11-24.
[49]
SIMPSON J T, HUNTER S R, AYTUG T. Superhydrophobic materials and coatings:a review[J]. Rep Prog Phys, 2015, 78(8):086501.
[50]
ZOLNIK B S, GONZALEZFERNANDEZ A, SADRIEH N, et al. Minireview: nanoparticles and the immune system[J]. Endocrinology, 2010, 151(2):458-465.
[51]
CHEN D, WEI L. Proposing “nano-based physical pharmacy” principle for overcoming bottlenecks in development of nanomedicine[J]. Acad J Second Mil Med Univ(第二军医大学学报), 2017,38(6):699-706.
[52]
RAAMANATHAN A, SIMMONS G W, CHRISTODOULIDES N, et al. Programmable bio-nano-chip systems for serum CA125 quantification:toward ovarian cancer diagnostics at the point-of-care[J]. Cancer Prevent Res, 2012, 5(5):706-716.
[53]
CEDRÉS S, NUÑEZ I, LONGO M, et al. Serum tumor markers CEA, CYFRA21-1, and CA-125 are associated with worse prognosis in advanced non-small-cell lung cancer (NSCLC)[J]. Clin Lung Cancer, 2011, 12(3):172-179.
[54]
ARYANI A, DENECKE B. Exosomes as a nanodelivery system: a key to the future of neuromedicine?[J]. Mol Neurobiol, 2016, 53(2):818-834.
[55]
FAIS S, LOGOZZI M, LUGINI L, et al. Exosomes:the ideal nanovectors for biodelivery[J]. Biol Chem, 2013, 394(1):1-15.
[56]
MEI L, ZHANG X, FENG S S. Autophagy inhibition strategy for advanced nanomedicine[J]. Nanomedicine, 2014, 9(3):377-380.