Abstract��As a novel transdermal drug delivery technology,microneedles has some advantages including high efficiency and safety over other drug administration routes. The skin puncture performance is the premise and key for microneedles to deliver drugs. Based on the mechanical strength of the microneedles and the puncture effect of the skin, this review summarized the current evaluation methods of puncture performance. These methods were described here such as fracture strength measurement, pressure-displacement performance testing, organic dye staining, transepidermal water loss, electrical impedance method, histological sections, confocal microscopy and optical coherence tomography. The scope of application, advantages and disadvantages of various methods were analyzed, which provide references for other researchers to choose suitable evaluation method of microneedles puncture performance.
ռ�ƻ�,��ӱ��,���ɭ. �봩���������۷����о���չ[J]. �й�ҩѧ��־, 2018, 53(22): 1890-1895.
ZHAN Hao-hui, HUANG Ying-cong, MA Feng-sen. Research Progress in the Evaluation Methods of Microneedles Puncture Performance. Chinese Pharmaceutical Journal, 2018, 53(22): 1890-1895.
ZHANG J, MA F S, ZHAN H H. Matrix materials and their composites for dissolvable microneedle construction: a review[J]. Mat Rev(���ϵ���), 2017, 31(19):129-134.
[2]
HUANG Y C, MA F S, ZHAN H H. Microneedle array used for transdermal delivery of biomacromolecules[J]. Pro Biochem Biophys(���ﻯѧ�����������չ), 2017, 44(9):757-768.
[3]
LIU S, QUAN Y S, FANG L, et al. The preparation and properties investigation of novel percutaneously delivered insulin hyaluronic acid microneedles[J]. J Shenyang Pharm Univ(����ҩ�ƴ�ѧѧ��), 2010, 27(1):6-10.
[4]
MENG L J, QIAO J X, LIN P T, et al. Microneedle percutaneous drug delivery system, wound repair and pharmacology evaluation[J]. Chin Pharm J(�й�ҩѧ��־), 2017, 52(6):434-437.
[5]
KEARNEY M C, BROWN S, MCCRUDDEN M T C, et al. Potential of microneedles in enhancing delivery of photosensitising agents for photodynamic therapy[J]. Photodiagnosis Photodyn Ther, 2014, 11(4):459-466.
[6]
GUPTA J, DENSON D D, FELNER E I, et al. Rapid local anesthesia in human subjects using minimally invasive microneedles[J]. Clin J Pain, 2012, 28(2):129-135.
[7]
SULLIVAN S P, KOUTSONANOS D G, DEL PILAR MARTIN M, et al. Dissolving polymer microneedle patches for influenza vaccination[J]. Nat Med, 2010, 16(8):915-920.
[8]
SAKAGUCHI K, HIROTA Y, HASHIMOTO N, et al. A minimally invasive system for glucose area under the curve measurement using interstitial fluid extraction technology: evaluation of the accuracy and usefulness with oral glucose tolerance tests in subjects with and without diabetes[J]. Diabetes Technol Ther, 2012, 14(6):485-491.
[9]
PEARTON M, SALLER V, COULMAN S A, et al. Microneedle delivery of plasmid DNA to living human skin: formulation coating, skin insertion and gene expression[J]. J Controlled Release, 2012, 160(3):561-569.
[10]
BARIYA S H, GOHEL M C, MEHTA T A, et al. Microneedles: an emerging transdermal drug delivery system[J]. J Pharm Pharmacol, 2012, 64(1):11-29.
[11]
ZHOU C P, LIU Y L, WANG H L, et al. Transdermal delivery of insulin using microneedle rollers in vivo[J]. Int J Pharm, 2010, 392(1):127-133.
[12]
ZAHN J D, TALBOT N H, LIEPMANN D, et al. Microfabricated polysilicon microneedles for minimally invasive biomedical devices[J]. Biomed Microdevices, 2000, 2(4):295-303.
[13]
PARK J H, ALLEN M G, PRAUSNITZ M R. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery[J]. J Controlled Release, 2005, 104(1):51-66.
[14]
DEMIR Y K, AKAN Z, KERIMOGLU O. Characterization of polymeric microneedle arrays for transdermal drug delivery[J]. PLoS One, 2013, 8(10):e77289.
[15]
LEE J W, PARK J H, PRAUSNITZ M R. Dissolving microneedles for transdermal drug delivery[J]. Biomaterials, 2008, 29(13):2113-2124.
[16]
DAVIS S P, LANDIS B J, ADAMS Z H, et al. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force[J]. J Biomech, 2004, 37(8):1155-1163.
[17]
PARK J. Polymeric microneedles for transdermal drug delivery[J]. Adv Drug Deliv Rev, 2004, 56(5):581-587.
[18]
LOETERS P W H, DUWEL R F, VERBAAN F J, et al. Measuring the insertion of microfabricated microneedles into skin with a penetration sensor[J]. RSC, 2004, 296(1):497-499.
[19]
ROXHED N, GASSER T C, GRISS P, et al. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery[J]. J Microelectromech Syst, 2007, 16(6):1429-1440.
[20]
DONNELLY R F, MAJITHIYA R, SINGH T R R, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique[J]. Pharm Res, 2011, 28(1):41-57.
[21]
MCCRUDDEN M T, ALKILANI A Z, MCCRUDDEN C M, et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs[J]. J Controlled Release, 2014, 180(100):71-80.
[22]
GOMAA Y A, GARLAND M J, MCINNES F, et al. Laser-engineered dissolving microneedles for active transdermal delivery of nadroparin calcium[J]. Eur J Pharm Biopharm, 2012, 82(2):299-307.
[23]
DONNELLY R F, MCCRUDDEN M T C, ALKILANI A Z, et al. Hydrogel-forming microneedles prepared from ��super swelling�� polymers combined with lyophilised wafers for transdermal drug delivery[J]. PLoS One, 2014, 9(10):e111547.
[24]
ZHU Z, LUO H, LU W, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide[J]. Pharm Res, 2014, 31(12):3348-3360.
[25]
KALLURI H, KOLLI C S, BANGA A K. Characterization of microchannels created by metal microneedles: formation and closure[J]. AAPS J, 2011, 13(3):473-481.
[26]
GOMAA Y A, MORROW D I, GARLAND M J, et al. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss[J]. Toxicol In Vitro, 2010, 24(7):1971-1978.
[27]
KOCHHAR J S, QUEK T C, SOON W J, et al. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin[J]. J Pharm Sci, 2013, 102(11):4100-4108.
[28]
MCALLISTER D V, WANG P M, DAVIS S P, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies[J]. Proc Natl Acad Sci USA, 2003, 100(24):13755-13760.
[29]
CHEN J, QIU Y, ZHANG S, et al. Dissolving microneedle-based intradermal delivery of interferon-��-2b[J]. Drug Dev Ind Pharm, 2016, 42(6):890-896.
[30]
KENNEDY J, LARRANETA E, MCCRUDDEN M T C, et al. In vivo studies investigating biodistribution of nanoparticle-encapsulated rhodamine B delivered via dissolving microneedles[J]. J Controlled Release, 2017,265:57-65.
[31]
YAN G, WARNER K S, JIE Z, et al. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery[J]. Int J Pharm, 2010, 391(1-2):7-12.
[32]
KUSAMORI K, KATSUMI H, SAKAI R, et al. Development of a drug-coated microneedle array and its application for transdermal delivery of interferon alpha[J]. Biofabrication, 2016, 8(1):015006.
[33]
CHILCOTT R P, DALTON C H, EMMANUEL A J, et al. Transepidermal water loss does not correlate with skin barrier function in vitro[J]. J Invest Dermatol, 2002, 118(5):871-875.
[34]
FORVI E, SONCINI M, BEDONI M, et al. Proceedings of the World Congress on Engineering[C]. London:Researchgate, 2010:1150-1154.
[35]
GUPTA J, GILL H S, ANDREWS S N, et al. Kinetics of skin resealing after insertion of microneedles in human subjects[J]. J Controlled Release, 2011, 154(2):148-155.
[36]
BROGDEN N K, MILEWSKI M, GHOSH P, et al. Diclofenac delays micropore closure following microneedle treatment in human subjects[J]. J Controlled Release, 2012, 163(2):220-229.
[37]
KARANDE P, JAIN A, MITRAGOTRI S. Relationships between skin's electrical impedance and permeability in the presence of chemical enhancers[J]. J Controlled Release, 2006, 110(2):307-313.
[38]
KELCHEN M N, SIEFERS K J, CONVERSE C C, et al. Micropore closure kinetics are delayed following microneedle insertion in elderly subjects[J]. J Controlled Release, 2016, 225: 294-300.
[39]
LARRANETA E, MOORE J, VICENTE-PEREZ E M, et al. A proposed model membrane and test method for microneedle insertion studies[J]. Int J Pharm, 2014, 472(1):65-73.
[40]
CHU L Y, PRAUSNITZ M R. Separable arrowhead microneedles[J]. J Controlled Release, 2011, 149(3):242-249.
[41]
LEELADURGA V, TEJA U C, SULTANA S K A, et al. Application of microneedle arrays for enhancement of transdermal permeation of insulin: in vitro experiments, scaling analyses and numerical simulations[J]. AAPS Pharm Sci Tech, 2016, 17(4):915-922.
[42]
PARK Y H, SANG K H, CHOI I, et al. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery[J]. Biotechnol Bioprocess Eng, 2016, 21(1):110-118.
[43]
COULMAN S A, BIRCHALL J C, ALEX A, et al. In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography[J]. Pharm Res, 2011, 28(1):66-81.
[44]
BIRCHALL J, COULMAN S, PEARTON M, et al. Cutaneous DNA delivery and gene expression in ex vivo human skin explants via wet-etch microfabricated microneedles[J]. J Drug Target, 2005, 13(7):415-421.
[45]
GITTARD S D, CHEN B, XU H, et al. The effects of geometry on skin penetration and failure of polymer microneedles[J]. J Adhes Sci Technol, 2013, 27(3):227-243.
[46]
BAL S, KRUITHOF A C, LIEBL H, et al. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy[J]. Laser Phys Lett, 2010, 7(3):242-246.
[47]
LEE I, LIN W M, SHU J C, et al. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice[J]. J Biomed Mater Res A, 2017, 105(1):84-93.
[48]
DEMIR Y K, AKAN Z, KERIMOGLU O. Characterization of polymeric microneedle arrays for transdermal drug delivery[J]. PLoS One, 2013, 8(10):e77289.
[49]
DONNELLY R F, GARLAND M J, MORROW D I J, et al. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution[J]. J Controlled Release, 2010, 147(3):333-341.