1. ���ѧԺ����ҽԺ, a. �����ڿ�, b. ����ʵ����, c. ���ڿ�,���ɹ� ��� 024005; 2. ���ɹ�����������ҽԺ�����ڿ�,���ͺ��� 010017; 3. �й�ҽѧ��ѧԺҩ���о���,���� 100050
Recent Progress in Understanding the Mechanism of Neuroprotective Effect of Pinocembrin
WANG Yu-min1a, GE Yong-li2, ZHAO Li-nan1b, ZHAO Wei-li1c, DU Guan-hua3*, WANG Hong-quan1c,3*
1a. Department of Oncology; 1b. Central Lab, 1c. Department of Neurology, Affiliated Hospital, Chifeng Medical College, Chifeng University, Chifeng 024005, China; 2. Department of Oncology, Inner Mongolia People��s Hospital, Huhehot 010017, China; 3. Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
Abstract��Pinocembrin (5, 7-dihydroxyflavanone), a flavanone, is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown to have neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these a variety of pharmacological activities, pinocembrin has potential as a drug to treat ischemic stroke and neurodegenerative disease. Its pharmacologic characteristics are summarized and mechanistic details relating preclinical studies are discusses.
������, ������, �����, ��ΰ��, �Źڻ�, ����Ȩ. ƥŵ���ֵ��������û����о���չ[J]. �й�ҩѧ��־, 2018, 53(4): 245-248.
WANG Yu-min, GE Yong-li, ZHAO Li-nan, ZHAO Wei-li, DU Guan-hua, WANG Hong-quan. Recent Progress in Understanding the Mechanism of Neuroprotective Effect of Pinocembrin. Chinese Pharmaceutical Journal, 2018, 53(4): 245-248.
VILLANUEVA V R, BARBIER M, GONNET M, et al. The flavonoids of propolis. Isolation of a new bacteriostatic substance: pinocembrin (dihydroxy-5, 7 flavanone)[J]. Ann Inst Pasteur (Paris), 1970, 118 (1): 84-87.
[2]
LIU Y L, HO D K, CASSADY J M, et al. Isolation of potential cancer chemopreventive agents from Eriodictyon californicum [J]. J Nat Prod, 1992, 55 (3): 357-363.
[3]
YUAN Y, YANG Q Y, TONG Y F, et al. Synthesis and enantiomeric resolution of (+/-)-pinocembrin [J]. J Asian Nat Prod Res, 2008, 10(9-10): 999-1002.
[4]
RASUL A, MILLIMOUNO F M, ALI E W, et al. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities[J]. Biomed Res Int, 2013, 2013: 379850.
[5]
WEISSHAAR B, JENKINS G I. Phenylpropanoid biosynthesis and its regulation [J]. Curr Opin Plant Biol, 1998, 1 (3): 251-257.
[6]
MIYAHISA I, FUNA N, OHNISHI Y, et al. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli [J]. Appl Microbiol Biotechnol, 2006, 71 (1): 53-58.
[7]
YAN Y, KOHLI A, KOFFAS M A. Biosynthesis of natural flavanones in Saccharomyces cerevisiae [J]. Appl Environ Microbiol, 2005, 71 (9): 5610-5613.
[8]
KIM B G, LEE H, AHN J H. Biosynthesis of pinocembrin from glucose using engineered Escherichia coli [J]. J Microbiol Biotechnol, 2014, 24 (11): 1536-1541.
[9]
METZNER J, BEKEMEIER H, SCHNEIDEWIND E M, et al. Pharmacokinetic studies of the propolis constituent pinocembrin in the rat (author��s transl)[J]. Pharmazie, 1979, 34 (3): 185-187.
[10]
SAAD M A, ABDEL S R M, KENAWY S A, et al. Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion [J]. Pharmacol Rep, 2015, 67 (1): 115-122.
[11]
WU C X, LIU R, GAO M, et al. Pinocembrin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress induced apoptosis [J]. Neurosci Lett, 2013, 546: 57-62.
[12]
LIU R, GAO M, YANG Z H, et al. Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia-reperfusion both in vivo and in vitro [J]. Brain Res, 2008, 1216: 104-115.
[13]
ZHAO G, ZHANG W, LI L, et al. Pinocembrin protects the brain against ischemia-reperfusion injury and reverses the autophagy dysfunction in the penumbra area [J]. Molecules, 2014, 19 (10): 15786-15798.
[14]
GAO M, ZHU S Y, TAN C B, et al. Pinocembrin protects the neurovascular unit by reducing inflammation and extracellular proteolysis in MCAO rats [J]. J Asian Nat Prod Res, 2010, 12 (5): 407-418.
[15]
GAO M, LIU R, ZHU S Y, et al. Acute neurovascular unit protective action of pinocembrin against permanent cerebral ischemia in rats [J]. J Asian Nat Prod Res, 2008, 10 (5-6): 551-558.
[16]
MENG F, LIU R, GAO M, et al. Pinocembrin attenuates blood-brain barrier injury induced by global cerebral ischemia-reperfusion in rats [J]. Brain Res, 2011, 1391: 93-101.
[17]
SHI L L, CHEN B N, GAO M, et al. The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats [J]. Life Sci, 2011, 88 (11-12): 521-528.
[18]
GUANG H M, DU G H. Protections of pinocembrin on brain mitochondria contribute to cognitive improvement in chronic cerebral hypoperfused rats [J]. Eur J Pharmacol, 2006, 542 (1-3): 77-83.
[19]
WANG S B, PANG X B, GAO M, et al. Pinocembrin protects rats against cerebral ischemic damage through soluble epoxide hydrolase and epoxyeicosatrienoic acids [J]. Chin J Nat Med(�й���Ȼҩ����־), 2013, 11 (3): 207-213.
[20]
JIN X, LIU Q, JIA L, et al. Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells [J]. Cell Mol Neurobiol, 2015, 35 (3): 323-333.
[21]
DE OLIVEIRA M R, PERES A, GAMA C S, et al. Pinocembrin provides mitochondrial protection by the activation of the Erk1/2-Nrf2 signaling pathway in SH-SY5Y neuroblastoma cells exposed to paraquat [J]. Mol Neurobiol, 2017,54(8):6018-6031.
[22]
WANG Y, GAO J, MIAO Y, et al. Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway [J]. J Mol Neurosci, 2014, 53 (4): 537-545.
[23]
WANG H Q, WANG Y M, ZHAO L N, et al. Pinocembrin attenuates MPP(+)-induced neurotoxicity by the induction of heme oxygenase-1 through ERK1/2 pathway [J]. Neurosci Lett, 2016, 612: 104-109.
[24]
LIU R, LI J Z, SONG J K, et al. Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits [J]. Neurobiol Aging, 2014, 35 (6): 1275-1285.
[25]
LIU R, WU C X, ZHOU D, et al. Pinocembrin protects against ��-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis [J]. BMC Med, 2012, 10: 105.
[26]
LIU R, LI J Z, SONG J K, et al. Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-��(1-40) injury by suppressing the MAPK/NF-��B inflammatory pathways [J]. Biomed Res Int, 2014, 2014: 470393.
[27]
WANG Y, MIAO Y, MIR A Z, et al. Inhibition of beta-amyloid-induced neurotoxicity by pinocembrin through Nrf2/HO-1 pathway in SH-SY5Y cells [J]. J Neurol Sci, 2016, 368: 223-230.
[28]
WANG W, JIANG B, SUN H, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults [J]. Circulation, 2017, 135 (8): 759-771.
[29]
MOZAFFARIAN D, BENJAMIN E J, GO A S, et al. Executive summary: heart disease and stroke statistics--2016 update: a report from the american heart association [J]. Circulation, 2016, 133 (4): 447-454.
[30]
ITOH K, CHIBA T, TAKAHASHI S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements [J]. Biochem Biophys Res Commun, 1997, 236 (2): 313-322.
[31]
ITOH K, WAKABAYASHI N, KATOH Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain [J]. Genes Dev, 1999, 13 (1): 76-86.
[32]
NGUYEN T, YANG C S, PICKETT C B. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress [J]. Free Radic Biol Med(Free Radic Biol Med), 2004, 37 (4): 433-441.
[33]
LYAKHOVICH V V, VAVILIN V A, ZENKOV N K, et al. Active defense under oxidative stress. The antioxidant responsive element [J]. Biochemistry (Mosc), 2006, 71 (9): 962-974.
[34]
BAIRD L, DINKOVA-KOSTOVA A T. The cytoprotective role of the Keap1-Nrf2 pathway [J]. Arch Toxicol, 2011, 85 (4): 241-272.
[35]
STEWART J D, HENGSTLER J G, BOLT H M. Control of oxidative stress by the Keap1-Nrf2 pathway [J]. Arch Toxicol, 2011, 85 (4): 239.
[36]
WANG Y M, WANG Y H, DU G H, et al. Research progress of targeting HO-1/NOX2 pathway for the treatment of Parkinson��s disease [J]. Chin Pharm J(�й�ҩѧ��־), 2015, 50(23): 2024-2027.
[37]
WANG Y M, CHENG L, CUI Q F, et al. The research progress of targeting Nrf2/ARE signaling pathway for the neuroprotective effect of sulforaphane [J]. Chin Pharm J(�й�ҩѧ��־), 2016,51(17): 1445-1449.
[38]
DE OLIVEIRA M R, DA C F G, BRASIL F B, et al. Pinocembrin suppresses H2O2-induced mitochondrial dysfunction by a mechanism dependent on the Nrf2/HO-1 axis in SH-SY5Y cells [J]. Mol Neurobiol, 2017,doi:10.1007/s12035-016-0380-7.
[39]
DE OLIVEIRA M R, PERES A, FERREIRA G C. Pinocembrin attenuates mitochondrial dysfunction in human neuroblastoma SH-SY5Y cells exposed to methylglyoxal: role for the Erk1/2-Nrf2 signaling pathway [J]. Neurochem Res, 2017,42 (4): 1057-1072.