中国药学杂志
    
           首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  会议信息  |  联系我们  | 
�й�ҩѧ��־ 2014, Vol. 49 Issue (18) :1583-1588    DOI: 10.11669/cpj.2014.18.003
�� �� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
������ģ��Ԥ����ҩ�ɷֵĸζ���
Ҷ��1, ������1, ������1*, ������2*, Ҷ���3, Ҧ����2, ������1, Ǯ��ƽ1
1.������������Ƽ����޹�˾, ���� ���� 215123;
2.�Ϻ���ҽҩ��ѧҩ�ﰲȫ�����о�����, �Ϻ� 201203;
3.�й���ҽ��ѧԺ��ҩ�о���, ���� 100700)
YE Li1, WANG Xin-zhou1, ZHU Yong-liang1*, JIN Ruo-min2*, YE Zu-guang3, YAO Guang-tao2, LIU Jing-ge1, QIAN Xiang-ping1
1.Suzhou NeuPharma Co., Ltd., Suzhou 215123, China;
2. Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
3. China Academy of Chinese Medical Sciences, Beijing 100700, China

Download: PDF (843KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ŀ�� �����ܹ�Ԥ����ҩ�ɷָζ��ԵĶ�����Ч��ϵ(quantitative structure-activity relationship,QSAR)ģ�͡����� ��LTKB���ݿ�͹����������ռ��õ���286���˹��ϳɻ������62����ҩ�ɷ�, ��Ϊ����Ԥ��ģ�͵�ѵ����, ���ü򵥾����������ɭ�ֺ��ƽ�ʽ������3�������㷨����ģ�͹�����Ϊ��֤ģ�͵�Ԥ������, ѡ����22����ҩ�ɷ�(�ⲿ���Լ�)���иζ���ʵ��, Ȼ��ʵ������ģ��Ԥ��Ľ�����бȽϡ���� 3�������㷨ģ�;����нϺõ�����Ԥ������, ģ���ڲ�������֤(leave-one-out��leave-10%-out)�������78%~85%֮��;���򵥾����������ɭ���㷨������ģ�Ͷ��޸ζ�������Ԥ���׼ȷ���������ڶ��иζ�������Ԥ���׼ȷ��, ��ʾ�˽ϴ�Ķ��иζ�������Ԥ���ƫ����;�������ƽ�ʽ�������㷨������ģ�͵�Ԥ��ƫ���Խ�С, ����Ԥ������Ҳ�ϸ�(׼ȷ��82%)�����ѡ���ƽ�ʽ������ģ����Ϊ����ģ��, ���ⲿ���Լ���22����ҩ�ɷֵĸζ��Խ���Ԥ��, ׼ȷ�ʴﵽ73%, �ȵ����˹��ϳɻ�������Ϊѵ������������ģ���и��ߵ�Ԥ��׼ȷ�ʺ͸�С��ƫ���ԡ����� ���˹��ϳɻ����P��ҩ�ɷ���Ϊѵ����, �����˶���ҩ�ɷֵĸζ�Ԥ�������ϸߵ��ƽ�ʽ������ģ�͡�
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
Ҷ��
������
������*
������*
Ҷ���
Ҧ����
������
Ǯ��ƽ
�ؼ����� ��ҩ�ɷ�   �ζ���Ԥ��   �ƽ�ʽ������   ������Ч��ϵ(QSAR)     
Abstract�� OBJECTIVE To build tree models for the prediction of hepatotoxicity of compounds from traditional Chinese medicines (TCM).METHODS Three hundred and forty-eight compounds (256 with hepatotoxicity and 92 without) were collected from various databases and literatures and used as training set to build tree models. Twenty-two compounds identified from TCM were first tested for hepatotoxicity experimentally and then used as test set to evaluate the prediction accuracy of optimal tree models. RESULTS Models built with random forest algorithm had the highest overall predictive accuracy of 85% (leave-one-out), but had much lower accuracy for hepatotoxicity negative compounds compared to hepatotoxicity positive compounds (more positive bias). The model built with boosted decision tree had a similar overall predictive accuracy and a much less bias, and therefore was selected as the optimal model. The prediction accuracy of the 22 test samples was 73% by the optimal model. The optimal model based on the training set containing both synthetic and TCM compounds had less bias than an optimal model based on a training set containing only the synthetic compounds. CONCLUSION Tree models with high predictive accuracy are built based on a training set consisting of both synthetic and TCM compounds.The optimal models can predict the hepatotoxicity of TCM compounds with reasonable accuracy.
Keywords�� TCM compound,   hepatotoxicity prediction,   boosted decision tree,   quantitative structure-activity relationship(QSAR)     
�ո�����: 2014-10-23;
��������:�����ص�����о���չ�ƻ�(973�ƻ�)������Ŀ(2009CB522807);������Ȼ��ѧ����������Ŀ(81173652)
ͨѶ���� ������,��,��ʿ,�о�Ա �о�����:ҩ����Ϣѧ Tel/Fax:(0512)62956991/(0512)67062860 E-mail:yzhu@neupharma.com;������,Ů,���� �о�����:��ҩ����ѧ Tel:(021)51322401 E-mail:rmj801@126.com     Email: yzhu@neupharma.com
���߼��: Ҷ��,��,˶ʿ �о�����:ҩ����Ϣѧ;������,Ů,���� �о�����:��ҩ����ѧ Tel:(021)51322401 E-mail:rmj801@126.com
���ñ���:   
Ҷ��, ������, ������*�� .������ģ��Ԥ����ҩ�ɷֵĸζ���[J]  �й�ҩѧ��־, 2014,V49(18): 1583-1588
YE Li-, WANG Xin-Zhou-, ZHU Yong-Liang-* etc .Predicting Hepatotoxicity of Compounds from Traditional Chinese Medicines Using Tree Models[J]  Chinese Pharmaceutical Journal, 2014,V49(18): 1583-1588
��
[1] ARROWSMITH J. Trial watch: Phase III and submission failures: 2007-2010[J]. Nat Rev Drug Discov, 2011, 10(2): 87-87.[2] PUGH A J, BARVE A J, FALKNER K, et al. Drug-induced hepatotoxicity or drug-induced liver injury[J]. Clin Liver Dis, 2009, 13(2): 277-294.[3] MCRAE C A, AGARWAL K, MUTIMER D, et al. Hepatitis associated with Chinese herbs[J]. Eur J Gastroenterol Hepatol, 2002, 14(5): 559-562.[4] FURUKAWA M, KASAJIMA S, NAKAMURA Y, et al. Toxic hepatitis induced by show-wu-pian, a Chinese herbal preparation[J]. Intern Med, 2010, 49(15): 1537-1540.[5] PAN D S, FAN Y M, LI B. Advances of toxicogenomics in research on hepatotoxicity and nephrotoxicity [J]. Chin J Biologicals(�й�������Ʒѧ��־), 2012, 25(3): 383-385.[6] ZHANG T B. Research status of toxicogenomics and its influence on the future development of toxicology[J]. J Toxicol(����ѧ��־), 2005, 19(2): 83-88.[7] FOURCHES D, BARNES J C, DAY N C, et al. Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species[J]. Chem Res Toxicol, 2010, 23(1): 171-183.[8] EKINS S, WILLIAMS A J, XU J J. A predictive ligand-based bayesian model for human drug-induced liver injury[J]. Drug Metab Dispos, 2010, 38(12): 2302-2308.[9] CRUZ-MONTEAGUDO M, CORDEIRO M N D S, BORGES F. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity[J]. J Comput Chem, 2008, 29(4): 533-549.[10] CHENG A, DIXON S L. In silico models for the prediction of dose-dependent human hepatotoxicity[J]. J Comput Aided Mol Des, 2003, 17(12): 811-823.[11] EGAN W J, ZLOKARNIK G, GROOTENHUIS P D J. In silico prediction of drug safety: despite progress there is abundant room for improvement[J]. Drug Discov Today Technol, 2004, 1(4): 381-387.[12] CHEN M, VIJAY V, SHI Q, et al. FDA-approved drug labeling for the study of drug-induced liver injury[J]. Drug Discov Today, 2011, 16(15-16): 697-703.[13] HONG H, XIE Q, GE W, et al. Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics[J]. J Chem Inf Model, 2008, 48(7): 1337-1344.[14] HO T K. Random Decision Forest[C]. 3rd Int'l Conf. on Document Analysis and Recognition. Montreal,Canada. 1995: 278-282.[15] SCHAPIRE R E. The Strength of Weak Learnability[J]. Mach Learn, 1990, 5(2): 197-227.[16] ZHANG Q, ZHOU Q, JIN R M, et al. Methodological study on cell toxicity with liver and kidney co-culture system[J]. Chin J Inf Tradit Chin Med(�й���ҽҩ��Ϣ��־), 2011, 18(11): 36-38.[17] ZHANG Q, ZHOU Q, JIN R M, et al. Preliminary study on hepatotoxicity and nephrotoxicity induced by rutaecarpine [J]. Chin J Exp Tradit Med Form(�й�ʵ�鷽��ѧ��־), 2011, 17(8): 221-225.[18] ZHANG Q. Study the evaluation system of hepatic toxic components in traditional Chinese medicine on the cellular level[D]. Shanghai: Shanghai University of Traditional Chinese Medicine, 2011.[19] ZHU Y L, YE Z G. Computational toxicology and its application in toxicity study of traditional Chinese medicine[J]. Chin J New Drugs(�й���ҩ��־), 2011, 20(24): 2424-2429.[20] WANG T, ZHU C C, CHEN C B. The application of CoMFA in the composition of natural pharmacy[J]. Chin Pharm J (�й�ҩѧ��־), 2006, 41(24):1844-1846.
Copyright 2010 by �й�ҩѧ��־