中国药学杂志
    
           首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  会议信息  |  联系我们  | 
�й�ҩѧ��־ 2013, Vol. 48 Issue (24) :2069-2074    DOI: 10.11669/cpj.2013.24.001
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
��ԭ�����;ۺ��コ������������ҩ������е�Ӧ��
�����ǣ���ѧ��*����ǿ
������ѧҩѧԺҩ��ѧϵ������100191
CHUAN Xing-xing, WANG Xue-qing*, ZHANG Qiang
Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ŀ�� ���ܻ�ԭ�����;ۺ��コ������������ҩ����ͷ�����о���չ������ ��ǰ��������ҩ���ձ������Ч�ͺ͸����ô��ȱ�㣬����΢�������еİ��������ѳ�Ϊ��Ҫ���о�����֮һ���Թ������о�����Ϊ��������������˻�ԭ�����;ۺ��コ���Ľṹ�ص㣬���ֱ��ϸ��ˮƽ�Ͷ���ˮƽ������������������ҩ������е�Ӧ�á��������� ��������ϸ���ڲ��Ļ�ԭ�Ի������Ʊ���ԭ�����;ۺ��コ������ʵ����Ч����ҩ���ͷţ���������С����������Ч�õ��ص㣬���кܺõķ�չ��Ӧ��ǰ����
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
������
��ѧ��*
��ǿ
�ؼ����� ��ԭ����   �ۺ��コ��   �����   ҩ�����   ��������     
Abstract�� OBJECTIVE To introduce the application of reduction-sensitive polymeric micelles in the field of tumor targeting drug delivery. METHODS In the past decades, tumor targeted drug delivery systems have become important research area because they promise to resolve several key therapeutical issues including low treatment efficacy and significant side effects. On the basis of published literatures, the recent developments in reduction-sensitive polymeric micelles used for tumor targeting drug delivery were reviewed, with an emphasis on their structure characteristics as well as their biomedical applications from the cellular level and animal level, respectively. RESULTS AND CONCLUSION As a novel intelligent drug delivery system, reduction-sensitive polymeric micelles can effectively control drug release with low side effects and high therapeutic effects both in vitro and in vivo. It has great potential in tumor targeting drug delivery.
Keywords�� reduction-sensitive,   polymeric micelle,   disulfide bond,   drug delivery,   tumor targeting     
�ո�����: 2013-07-10;
��������:������Ȼ��ѧ����������Ŀ(81130059,81273456)
ͨѶ���� ��ѧ�壬Ů�������ڣ�˶ʿ�о�����ʦ �о�����:����ҩ������ϵͳ     Email: wangxq@bjmu.edu.cn
���߼��: �����ǣ�Ů��˶ʿ�о��� �о����򣺿�����ҩ��İ������
���ñ���:   
������, ��ѧ��*, ��ǿ .��ԭ�����;ۺ��コ������������ҩ������е�Ӧ��[J]  �й�ҩѧ��־, 2013,V48(24): 2069-2074
CHUAN Xing-Xing, WANG Xue-Qing-*, ZHANG Qiang .The Application of Reduction-Sensitive Polymeric Micelles in Tumor Targeting Drug Delivery[J]  Chinese Pharmaceutical Journal, 2013,V48(24): 2069-2074
��
[1] PARK J H,LEE S,KIM J H,et al. Polymeric nanomedicine for cancer therapy . Prog Polym Sci,2008,33(1):113-137.[2] GANTA S,DEVALAPALLY H,SHAHIWALA A,et al. A review of stimuli-responsive nanocarriers for drug and gene delivery . J Controlled Release, 2008,126(3):187-204.[3] HILGENBRINK A R,LOW P S. Folate receptor-mediated drug targeting: From therapeutics to diagnostics . J Pharm Sci,2005,94(10):2135-2146.[4] SAHOO S K,LABHASETWAR V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention . Mol Pharm,2005,2(5):373-383.[5] DAGAR S,KRISHNADAS A,RUBINSTEIN I,et al. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: In vivo studies. J Controlled Release,2003,91 (1-2):123-133.[6] YU D H,LU Q,XIE J,et al . Peptide -conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature . Biomaterials,2010,31(8):2278-2292.[7] XIONG X B,HUANG Y,LU W L,et al . Intracellular deli very of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy:In vitro and in vivo. J Pharm Sci,2005,94(8) :1782-1793.[8] XIONG X B,HUANG Y,LU W L,et al . Enhanced intracelluar delivery and improved antitum or efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic . J Controlled Release,2005,107 (2):262-275.[9] MAI J,SONG S,RU I M,et al . A synthetic peptide mediated active targeting of cisplatin liposomes to Tie2 expressing cells .J Controlled Release,2009,139(3):174-181. NEGUSS I E A H,MILLER J L,REDDY G,et al. Synthesis and in vitro eval uation of cyclic NGR peptide targeted thermally sensitive liposome . J Controlled Release,2010,143 (2):265-273. MENG F,ZHONG Z,FEIJEN J. Stimuli-responsive polymersomes for programmed drug delivery . Biomacromolecules,2009,10(2):197-209. FLEIGE E,QUADIR M A,HAAG R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds:Concepts and applications . Adv Drug Deliv Rev,2012,64(9):866-884. ALURI S, JANIB S M, MACKAY J A. Environmentally responsive peptides as anticancer drug carriers . Adv Drug Deliv Rev,2009,61(11): 940-952. LEE E S,NA K,BAE Y H. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor . J Controlled Release,2005,103(2): 405-418. EJAZ M,YU H,YAN Y,et al. Evaluation of redox-responsive disulfide cross-linked poly(hydroxyethyl methacrylate) hydrogels . Polymer,2011,52(23):5262-5270. DENG C,JIANG Y,CHENG R,et al. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery:Promises,progress and prospects . Nano Today,2012,7 (5):467-480. RAINA S,MISSIAKAS D. Making and breaking disulfide bonds . Annu Rev Microbiol,1997,51:179-202. ARUNACHALAM B,PHAN U T,GEUZE H J,et al. Enzymatic reduction of disulfide bonds in lysosomes: Characterization of a gamma-interferon-inducible lysosomal thiol reductase(GILT) . Proc Natl Acad Sci USA ,2000,7(2): 745-750. KURZ T,EATON J W,BRUNK U T. Redox activity within the lysosomal compartment: Implications for aging and apoptosis . Antioxid Redox Signal, 2010,13 (4):511-523. FRANCO R,CIDLOWSKI J A. Apoptosis and glutathione: Beyond an antioxidant . Cell Death Differ,2009,16(10):1303-1314. YUE J, LIU S, WANG R, et al. Transferrin-conjugated micelles:Enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models . Mol Pharm,2012,9:1919-1931. SUN H L,GUO B N,CHENG R,et al. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin . Biomaterials,2009,30(31):6358-6366. KIM J O,SAHAY G,KABANOV A V, et al. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents . Biomacromolecules,2010,11(4): 919-926. TANG L Y,WANG Y C,LI Y,et al. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery . Bioconjugate Chem, 2009, 20(6):1095-1099. SUN H,GUO B,LI X,et al. Shell-sheddable micelles based on dextran-SS-poly(��-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin . Biomacromolecules,2010,11(4):848-854. HERLAMBANG S,KUMAGAI M,NOMOTO T,et al. Disulfide crosslinked polyion complex micelles encapsulating dendrimer phthalocyanine directed to improved efficiency of photodynamic therapy . J Controlled Release,2011,155(3):449-457. KOO A N,MIN K H,LEE H J,et al. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links . Biomaterials,2012,33(5):1489-1499. WEN H Y,DONG H Q,XIE W J. Rapidly disassembling nanomicelles with disulfide-linked PEG shells for glutathione-mediated intracellular drug delivery . Chem Commun,2011,47:3550-3552. SUN Y,YAN X,YUAN T,et al. Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin . Biomaterials,2011,31(27):7124-7131. CHEN J,ZEHTABI F,OUYANG J,et al. Reducible self-assembled micelles for enhanced intracellular delivery of doxorubicin . J Mater Chem,2012,22: 7121-7129. O��REILLY R K,HAWKER C J,WOOLEY K L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility . Chem Soc Rev,2006,35(11):1068-1083. LI Y,XIAO K,LUO J,et al. Well-defined,reversible disulfide cross-linked micelles for on-demand paclitaxel delivery . Biomaterials,2011,32 (27): 6633-6645. WEI R,CHENG L,ZHENG M,et al. Reduction-responsive disassemblable core-crosslinked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggeredintracellular anti-cancer drug release. Biomacromolecules,2012,13(8):2429-2438. SUN J,CHEN X,LU T, et al. Formation of reversible shell cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly(L-cysteine)-block-poly(L-lactide) . Langmuir,2008,24(18): 10099-10106. KOO A N,LEE H J,KIM S E,et al. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery . Chem Commun,2008,48:6570-6572. MATSUMOTO S,CHRISTIE R J,NISHIYAMA N,et al. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery . Biomacromolecules,2009,10(1):119-127. VACHUTINSKY Y, OBA M, MIYATA K, et al. Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles . J Controlled Release,2011,149(1):51-57. WANG W,SUN H,MENG F, et al. Precise control of intracellular drug release and anti-tumor activity ofbiodegradable micellar drugs via reduction-sensitive shell-shedding . Soft Matter,2012,8:3949-3956. RYU J H,ROY R,VENTURA J,et al. Redox-sensitive disassembly of amphiphilic copolymer based micelles . Langmuir,2010,26(10):7086-7092. LI J,HUO M,WANG J,et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel . Biomaterials,2012,33(7):2310-2320. OISHI M,HAYAMA T,AKIYAMA Y, et al. Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: Polyion complex (PIC) micelles based on poly(ethylene glycol)-SS-Oligodeoxynucleotide conjugate . Biomacromolecules,2005,6(5):2449-2454. CHENG R,FENG F,MENG F,et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery . J Controlled Release,2011,152 (1):2-12.
[1] �����޸���,������,�Լ���,������,������.NGR-����̼���׹�-��ɼ����������Ʊ�����������о�[J]. �й�ҩѧ��־, 2013,48(20): 1748-1754
[2] ������������������������.˿��ù�������ԿǾ��Ǿۺ��コ����������ҩ��ѧ����֯�ֲ�[J]. �й�ҩѧ��־, 2013,48(18): 1569-1573
[3] ����ϼ����־ϲ�����Ļۣ���ˮ�У�֣����.������������˳�����������������Ʊ����������������������[J]. �й�ҩѧ��־, 2012,47(18): 1483-1488
[4] ��ʤ��, ���, Ҧ����, ������.pH������������΢����ż���ǻ�ϲ������Ʊ�������[J]. �й�ҩѧ��־, 2012,47(12): 965-969
[5] ������ ������ ۢ�� ��� ������ ���� ���к� ��С��.�׵�����ɼ���ۺ��コ������Ч���о�[J]. �й�ҩѧ��־, 2011,46(3): 199-202
[6] ����;¦��;÷�˹� ;������ . ����鵼���԰���ҩ�����ϵͳ�о���չ[J]. �й�ҩѧ��־, 2009,44(23): 1761-1764
[7] ������;����;�ƴ���;������;����ƽ;�����.����Ҷ������İ���������Ӱ�����Ʊ�����ԥ���ܵ��о�[J]. �й�ҩѧ��־, 2007,42(21): 1640-1643
[8] ��־��;����;���;��־��;�����;����.ǰ������֬����Ĺ������й������о�[J]. �й�ҩѧ��־, 2007,42(09): 672-675
[9] ��׿��;���ΰ;��ܰ��;����.����ù��B�ľ��Ҷ���-�����ὺ�����Ʊ����������ͷŶ���ѧ[J]. �й�ҩѧ��־, 2007,42(07): 519-523
Copyright 2010 by �й�ҩѧ��־