中国药学杂志
    
           首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  会议信息  |  联系我们  | 
�й�ҩѧ��־ 2013, Vol. 48 Issue (14) :1151-1156    DOI: 10.11669/cpj.2013.14.004
��Դ����� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
��ҩ��ĩ��Ϲ��̽��������߼���о�
����ӣ����Ҷ����ѩ�ɣ�������*
�㽭��ѧҩѧԺ,���� 310058
DING Hai-ying, JIN Ye, LIU Xue-song, WU Yong-jiang*
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

Download: PDF (1469KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ŀ�� ����΢�ͽ������ǽ������ڽ�������������׷�����ҩ��ĩ��Ϲ��̵Ŀ��ٶ�������ģ��,ʵ�ֶ���ҩ��ĩ��Ϲ��̵����߼�⡣���� ��ϲ�ͬ��ȵij��ֺ���֬�����ʷ�ĩ,�ɼ�����������������,ѡȡ���ʵĹ�����Ϊ��׼����,������׼���׺ͷ�ĩ��ʵ����֮���PLS��ԪУ��ģ��,������ģ��Ӧ������ҩ��ĩ��Ϲ��̵����߼�⡣��� ��ԭʼ���׽��ж���ɢ��У��(MSC)��һ�׵�����Savitzky-Golayƽ���˲���Ԥ�����,ѡ��5 900~5 950 cm-1,6 700~6 750 cm-1,6 950~7 100 cm-13�����ν���������У��ģ��,ģ�����ϵ����0.999 0,У����������(RMSEC)��Ԥ�������(RMSEP)��������֤������(RMSECV)�ֱ�Ϊ1.14��1.16��1.26������ �÷������������߼���Ϲ����в�ͬ�����ĩ�ĺ����ͻ�Ͼ��ȶ�,�жϻ���յ�,���۷�ĩ������״̬�Ƿ����������׼,���������̷�������(PAT)Ӧ������ҩ��Ϲ���,������ʵ�������������ơ�
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
����ӣ
��Ҷ
��ѩ��
������*
�ؼ����� �����������䷨   ƫ��С���˷�   ��ҩ���   ���߼��     
Abstract�� ObjectiveTo establish a rapid method based on near-infrared diffuse reflectance spectroscopy (NIR) to monitor the blending process of traditional Chinese medicinal powder on-line. Methods NIR spectra were collected during the blending processes of mixtures consisting of Red Peony Root powder and defatted Spine Date Seed powder. Multivariate calibration models based on PLS regression were developed to correlate the collected spectra with the content of Red Peony Root powder. The optimal calibration model was applied to monitor the blending process in real time with noninterference. Results After spectral pretreatment using multiplicative signal correction (MSC), first derivative and Savitzky-Golay filter, Red Peony Root powder contents were quantified using PLS algorithm in the spectral ranges of 5 900-5 950 cm-1,6 700-6 750 cm-1 and 6 950-7 100 cm-1. The correlation coefficient of the calibration model was 0.999 0. The RMSEC, RMSEP and RMSECV were 1.14, 1.16 and 1.26, respectively. Conclusion It was demonstrated that a miniature near-infrared analyzer could be used to monitor the contents of the constituents and the blending homogeneity of traditional Chinese medicinal powder in real time, and to rapidly determine the end-point of blending process. In addition, it can be used to judge whether the physical state of powder mixture conforms to the standard. Therefore, NIR spectroscopy is considered to be an appropriate PAT tool for end-point control of blending process of traditional Chinese medicinal powder.
Keywords�� near-infrared diffuse reflectance spectroscopy,   partial least squares regression,   traditional Chinese medicinal powder blending,   on-line monitoring     
�ո�����: 2012-10-09;
��������:

����“ʮһ��”�Ƽ�֧�żƻ�������Ŀ(2006BAI06A08);�㽭ʡ�ش�Ƽ��ƻ�������Ŀ(2008C03005)

ͨѶ���� ������,��,����,��ʿ,��ʿ����ʦ �о�����ҩƷ������������ơ�ҩ���л������ Tel/Fax(0571)88208621 E-mailyjwu@zju.edu.cn     Email: yjwu@zju.edu.cn
���߼��: ����ӣ,Ů,˶ʿ �о�������ҩ��������������������
���ñ���:   
����ӣ, ��Ҷ, ��ѩ�ɵ� .��ҩ��ĩ��Ϲ��̽��������߼���о�[J]  �й�ҩѧ��־, 2013,V48(14): 1151-1156
DING Hai-Ying, JIN Ye, LIU Xue-Song etc .On-line Monitoring of Traditional Chinese Medicinal Powder Blending Process by Using Near-Infrared Spectroscopy[J]  Chinese Pharmaceutical Journal, 2013,V48(14): 1151-1156
��
[1] BERNTSSON O,DANIELSSON L G,JOHANSSON M O,et al. Quantitative determination of content in binary powder mixtures using diffuse reflectance near infrared spectrometry and multivariate analysis . Anal Chim Acta,2000,419:45-54.
[2] BERNTSSON O,DANIELSSON L G,LAGERHOLM B,et al. Quantitative in-line monitoring of powder blending by near infrared reflection spectroscopy . Powd Tech,2002,123:185-193.
[3] FDA.Guidance for Industry-Powder Blends and Finished Dosage Units-Stratified In-Process Dosage Unit Sampling and Assessment DRAFT GUIDANCE,U. S. Department of Health and Human Services,Food and Drug,2003.
[4] SHI Z Q,COGDILL R P,SHORT S M,et al. Process characterization of powder blending by near-infrared spectroscopy: Blend end-points and beyond. J Pharm B,2008,47:738-745.
[5] ARWA S E,FRANK D,JAMES K D. A Process analytical technology approach to near-Infrared process control of pharmaceutical powder blending. part I: D-optimal design for characterization of powder mixing and preliminary spectral data evaluation . J Pharm Sci,2006,95(2):392-406.
[6] LUKE J B,ALISON N,DAVID L. Real-time monitoring of powder mixing in a convective blender using non-invasive reflectance NIR spectrometry . Analyst,2008,133:58-64.
[7] FDA.Guidance for Industry: PAT-A Framework for Innovative Pharmaceutical Development,Manufacturing and Quality Assurance,Food and Drug,2004.
[8] BODSON C,DEW′E W,HUBERT P H,et al. Comparison of FT-NIR transmission and UV-vis spectrophotometry to follow the mixing kinetics and to assay low-dose tablets containing riboflavin . J Pharm B,2006,41:783-790.
[9] JIN Y,WU Y J,LIU X S,et al. Rapid and quantitative determination of multiple quality indicators (Indole alkaloids,etc.) in concentration process of cantor extract using Fourier transform near infrared spectroscopy and chemometrics . Chin Pharm J (�й�ҩѧ��־),2012,47 (9):712-717.
[10] WU H Q,TAWAKKUL M,WHITE M,et al. Quality-by-Design (QbD): An integrated multivariate approach for the component quantification in powder blends . Int J Pharm,2009,372:39-48.
[11] CHEN C,LI W L,QU H B,et al. An on-line near-infrared spectroscopy approach for content determination in the percolation process of compound Kushen injection . Chin Pharm J (�й�ҩѧ��־),2012,47 (21):1698-1702.
[12] MOES J J,RUIJKEN M M,GOUT E,et al. Application of process analytical technology in tablet process development using NIR spectroscopy: Blend uniformity,content uniformity and coating thickness measurements . Int J Pharm,2008,357:108-118.
[13] XU X J,SONG L L,ZHU X K,et al. Study on the quality control of Liuweidihuangwan powder blending process by NIR . Chin J Med Appl Pharm(�й��ִ�Ӧ��ҩѧ��־),2006,23(7):644-646.
[14] GONG Y F,LIU X S,ZHANG S N,et al. On-line endpoint determination in blending process of dripping solution by near infrared spectroscopy . Chin Pharm J (�й�ҩѧ��־),2007,42(7):509-511.
[15] YU B Z,XIN M,SHI C S,et al. Analyze in a pharmaceutical manufacturing plant using miniature near - infrared analyzer . Chin Pharm Affa (�й�ҩ��),2008,22(7):560-563.
[16] BLANCO M, BAUTISTA M, ALCALA M. Preparing calibration sets for use in pharmaceutical analysis by NIR spectroscopy . J Pharm Sci, 2008, 97(3):l236-l245.
[17] DONG F Y. Modern New Formulation and New Technology of Practical Traditional Chinese Medicine (�ִ�ʵ����ҩ�¼����¼���) . Beijing:People′s Medical Publishing House,2001:117.
[18] BLANEO M, COELLO J, ITURRIAGA H. NIR Calibration in non-linear systems: Different PLS approaches and artificial neural networks . Chem Intell,2000,50:75-82.
[19] BLANCO M,BANO R G,BERTRAN E. Monitoring powder blending in pharmaceutical processes by use of near infrared spectroscopy . Talanta,2002,56:203-212.
[20] LU W Z,YUAN H F,XU G T,et al. Modern Near Infrared Spectroscopy Analytical Technology (�ִ���������׷�������) . Beijing:China Petrochemical Press,2000:20-26.
[21] BRERETON R G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant . Chichester:John Wiley & Sons Ltd,2003:132-138.
[22] TAYLOR R. An Introduction to Error Analysis . 2nd ed. Sausalito,CA:University Science Books Press,1982.
[23] ISAKSSON T,NAES T. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy . Appl Spectr,1988,42:1273-1284.
[24] MCCARTHY W J. TQ Analyst User′s Guide,Madison,W I:Thermo Nicolet Corp,2003.
[25] JIN S Y,CHEN H Z. Near-infrared analysis of the chemical composition of rice straw . Industrial Crops and Products,2007,26(2):207-211.
[26] SAVITZKY A,GOLAY M. Smoothing and differentiation of data by simplified least squares procedures . Anal Chem,1964,36:1627-1639.
Copyright 2010 by �й�ҩѧ��־