中国药学杂志
    
           首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  会议信息  |  联系我们  | 
�й�ҩѧ��־ 2013, Vol. 48 Issue (14) :1143-1146    DOI: 10.11669/cpj.2013.14.002
�� �� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
ϸ����Ĥ�ĵ��о���չ
�ﴺ�ȣ����㣬Ϳ����*
�й�ҩ�ƴ�ѧҩ��������,�Ͼ� 210009
SUN Chun-meng, SHEN Yan, TU Jia-sheng*
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009,China

Download: PDF (760KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ŀ�� ����ϸ����Ĥ�ĵ��о���չ�� ���� �Խ������о�����Ϊ����,��ϸ����Ĥ�ĵĽṹ�ص㡢���ࡢ�ڻ����ơ�Ӧ���Լ��µ��о�����Ƚ��������� ��� ϸ����Ĥ��(cell-penetrating peptides,CPPs)��һ���ɲ�����30����������ɵ�С���Ӷ���,�����䰱�������,�ɷ�Ϊ������ϸ����Ĥ�ĺ�������ϸ����Ĥ�ġ��������о�����,ϸ����Ĥ���ܹ��鵼��������Ĵ�Ĥ����,�޴̼���,������һ��Ũ�ȷ�Χ�ڶ�����ϸ���޶������á����� ϸ����Ĥ�ĵ����û��������������̽��,������Ϊһ������ҩ����͹���,���й㷺��Ӧ��ǰ����
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ﴺ��
����
Ϳ����*
�ؼ����� ϸ����Ĥ��   �ṹ�ص�   ����   �ڻ�����     
Abstract�� ObjectiveTo review the progress on cell-penetrating peptides(CPPs). Methods Based on the original researches in recent years, the structure properties, classification, internalization mechanism, application and novel research orientation of CPPs were introduced in the present paper. Results Cell-penetrating peptides(CPPs) consisted of 30 or less amino acids. CPPs, generally categorized as amphipathic or cationic depending on their sequences, are increasingly drawing attention as a non-invasive delivery technology for macromolecules. Delivery of a diverse set of cargoes has been attempted using different types of CPPs in vitro and in vivo. Additionally, the relative lack of toxicity and cell specificity has enabled its widespread use in preclinical models. This paper reviewed the studies on the structure properties, classification, internalization mechanism, application and novel research orientation of CPPs. Conclusion Although the internalization mechanism of CPPs will be studied deeply, CPPs, as a novel drug delivery tool, has promising application for the delivery of diverse drugs and cargoes.
Keywords�� cell-penetrating peptide,   structure property,   classification,   internalization mechanism     
�ո�����: 2012-10-21;
��������:

������Ŀ:���ҿƼ�֧�żƻ�������Ŀ(2008BAI55B03);����“�ش���ҩ����”�Ƽ��ش�ר��������Ŀ( 2009ZX09310-004)

ͨѶ���� Ϳ����,��,����,��ʿ����ʦ �о������¼��������Ƽ�Tel(025)83271305 E-mailjiashengtu@yahoo.com.cn     Email: jiashengtu@yahoo.com.cn
���߼��: �ﴺ��,��,��ʿ�о��� �о����򵰰׸�ҩϵͳ
���ñ���:   
�ﴺ��, ����, Ϳ����* .ϸ����Ĥ�ĵ��о���չ[J]  �й�ҩѧ��־, 2013,V48(14): 1143-1146
SUN Chun-Meng, SHEN Yan, TU Jia-Sheng-* .Advance on the Research of Cell-Penetrating Peptides[J]  Chinese Pharmaceutical Journal, 2013,V48(14): 1143-1146
��
[1] ZARO J L,SHEN W C. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochem Biophy Res Comm, 2003, 307(2): 241-247.
[2] WENDER P A, ROTHBARD J B, JESSOP T C, et al. Oligocarbamate molecular transporters: Design, synthesis, and biological evaluation of a new class of transporters for drug delivery. J Ame Chem Soc, 2002, 124(45): 13382-13383.
[3] FUTAKI S, NAKASE I, SUZUKI T, et al. Translocation of branched-chain arginine peptides through cell membranes: Flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Biochemistry, 2002, 41(25): 7925-7930.
[4] FUTAKI S, SUZUKI T, OHASHI W, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem, 2001, 276: 5836-5840.
[5] WENDER P A, MITCHELL D J, PATTABIRAMAN K, et al.The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA, 2000, 97(24): 13003-13008.
[6] MITCHELL D J, KIM D T, STEINMAN L, et al. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Peptide Res, 2000, 56(5): 318-325.
[7] GUO Q G, ZHAO G J, HAO F J, et al. Effects of the TAT peptide orientation and relative location on the protein transduction efficiency. Chemical Biology & Drug Design, dio: 10.1111/j.1747-0285.2011.01315.x.
[8] KHAFAGY S EL, MORISHITA M, N, NISHIO R, et al.Structural requirements of penetratin absorption enhancement efficiency for insulin delivery. J Controlled Release, 2010, 143(3): 302-310.
[9] LUNDBERG M, WIKSTROM S,JOHANSSON M. Cell surface adherence and endocytosis of protein transduction domains. Mole Ther, 2003, 8(1): 143-150.
[10] HERCE H D, GARCIA A E, LITT J, et al. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophy J, 2009, 97: 1917-1925.
[11] MORISHITA M, KAMEI N, EHARA J, et al.A novel approach using functional peptides for efficient intestinal absorption of insulin. J Controlled Release, 2007, 118(2): 177-184.
[12] KAMEI N, MORISHITA M, EHARA J, et al. Permeation characteristics of oligoarginine through intestinal epithelium and its usefulness for intestinal peptide drug delivery. J Controlled Release, 2008, 131(2): 94-99.
[13] KAMEI N, MORISHITA M, EDA Y, et al. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Controlled Release, 2008, 132(1): 21-25.
[14] KHAFAGY S EL, MORISHITA M, KAMEI N, et al. Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins. Int J Pharm, 2009, 381(1): 49-55.
[15] KAMEI N, MORISHITA M, TAKAYAMA K.Importance of intermolecular interaction on the improvement of intestinal therapeutic peptide/protein absorption using cell-penetrating peptides. J Controlled Release, 2009, 136(3): 179-186.
[16] ZARO J L,SHEN W C. Cytosolic delivery of a p16-peptide oligoarginine conjugate for inhibiting proliferation of MCF7 cells. J Controlled Release, 2005, 108(2-3): 409-417.
[17] FISCHER R, WAIZENEGGER T, KOHLER K, et al. A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: Fluorophore and cargo dependence of import. Biochim et Biophy Acta, 2002, 1564(2): 365-374.
[18] GUTERSTAM P, ANDALOUSSI S EL, LANGEL U. Characterization of cellular internalization pathways for CPP-mediated Oligonucleotide delivery. Methods Mol Biol, 2011, 683: 219-230.
[19] KHAFAGY S EL, MORISHITA M, KAMEI N, et al. Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins. Int J Pharm, 2009, 381(1): 49-55.
[20] QIN Y, CHEN H, YUAN W M, et al. Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int J Pharm, doi: 10.1016/j. ijpharm. 2011. 07. 021.
[21] KANAZAWA T, TAKI H, TANAKA K,et al. Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Biomedical and Life Science, 2011, 28(9): 2130-2139.
[22] PHEIER S, YOUNG T K, SANG YJ. Efficient liposomal nanocarrier-mediated oligodeoxynucleotide delivery involving dual use of a cell-penetrating peptide as a packaging and intracellular delivery agent.Macromolecular Rapidecular Communications, 2010, 31(12): 1155-1162.
[23] MA D X , SHI N Q,QI X R. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm, doi: 10.1016/j. ijpharm. 2011. 08. 001.
[24] AROUI S, MILI D, BRAHIM S, et al. Doxorubicin coupled to penetratin promotes apoptosis in CHO cells by a mechanism involving c-Jun NH2-terminal kinase. Biochem Biophy Res Comm, 2010, 396(4): 908-914.
[25] HAYASHI Y, YAMAUCHI J, KHALIL I A, et al. Cell penetrating peptide-mediated systemic siRNA delivery to the liver. Int J Pharm, doi: 10.1016/j. ijpharm. 2011. 07. 038.
[26] YANG K, CAO Y A, SHI C, et al. Quantum dot-based visual in vivo imaging for oral squamous cell carcinoma in mice. Oral Oncology, 2010, 46(12): 864-868.
[27] NGUYEN T Q, OLSON E S, AGUILERA T A, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences, 2010, 107(9): 4317-4322.
[28] JIANG T, OLSON E S, NGUYEN Q T, et al. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA, 2004, 101(51): 17867-17872.
[29] FEI L, REN L, ZARO J L, et al. The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. J Drug Targeting, 2011, 19(8): 675-680.
[30] OLSON E S, AGUILERA T A, JIANG T, et al. In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. J Integrative Biology, 2009, 1(5-6): 382-393.
[31] AGUILERA T A, TIMMERS M M, OLSON E S, et al. Systemic in vivo distribution of activatable cell penetrating peptides is superior to cell penetrating peptides. J Integrative Biology, 2009, 1(5-6): 371-381.
[32] WANG P C, QI X R, The design and euzymatic hydrdysts of actitable cell-penetrating pcptide.Acta Pharm Sin(ҩѧѧ��), 2010,45(8):1048-1051.
[33] ZARO J L, FEI L, SHEN W C. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. J Controlled Release, doi:10.1016/j.jconrel.2012.01.039.
[34] GERWECK L E, SEETHARAMAN K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res, 1996, 56: 1194-1198.
Copyright 2010 by �й�ҩѧ��־