中国药学杂志
    
           首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  会议信息  |  联系我们  | 
�й�ҩѧ��־ 2012, Vol. 47 Issue (17) :1345-1349    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
�˹���������ҩ��ѧ��ҩЧѧ�о��е�Ӧ���½�չ
�����£���Ԩ�ɣ��ܸڣ������ȣ����������̱���
1.�㽭��ҽҩ��ѧ��ҩ���Ƽ����о����ģ����� 310053��2.������ѧ������ɽҽԺ�������о������Ϻ� 200040��3.�Ͼ���ҽҩ��ѧ������ʡ��ҩ�����ص�ʵ���ң��Ͼ� 210049��

Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ Ŀ�� �����˹������缼����ҩ��ѧ��ҩЧѧ�е��о���״��Ӧ���½�չ������ �Խ������������������Ϊ���ݣ��Ըü�����ҩ���л����ѧ/��������Ԥ�⡢ҩ��ѧ����Ԥ�⡢�ٴ�ҩЧԤ�⡢Ⱥ��ҩ��ѧ�о���ҩ��ѧ-ҩЧѧ����о�������ҩ���⼰��ҩҩ��ѧ/ҩЧѧ�����Ӧ�ý��з������ɺ��ܽᡣ�������� �˹���������ҩ��ѧ��ҩЧѧ�о���һ���������ߣ����нϺõ����ú����õ�Ӧ��ǰ����
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
������
��Ԩ��
�ܸ�
������
������
�̱���
�ؼ����� �˹�������   ҩ��ѧ   ҩЧѧ     
Abstract��
Keywords��   
�ո�����: 2012-09-12;
��������:

������Ŀ��������Ȼ��ѧ����������Ŀ(30873438/ c190801)�� �㽭ʡ��ҽҩ�ص���Ŀ�о��ƻ�(2008ZA002)���㽭ʡ��óί(�������[2008]268��)

ͨѶ���� �����£�Ů��˶ʿ�о��� �о�������ҩ���Ƽ��������� ��ͨѶ���ߴ��������У����ڣ� ˶ʿ����ʦ �о�������ҩ���Գɷּ������о� Tel13757127933 E-mailcongxiaodong199@yahoo.com.cn�� �̱������У����ڣ���ʿ����ʦ �о�������ҩ���Ƽ�������׼ Tel13770501090 E-mailbccai@hotmail.com     Email: congxiaodong199@yahoo.com.cn�� �̱������У����ڣ���ʿ����ʦ �о�������ҩ���Ƽ�������׼ Tel��13770501090 E-mail��bccai@hotmail.com
���ñ���:   
������, ��Ԩ��, �ܸڵ� .�˹���������ҩ��ѧ��ҩЧѧ�о��е�Ӧ���½�չ[J]  �й�ҩѧ��־, 2012,V47(17): 1345-1349
DAN Qi-Yuan-, CHEN Yuan-Cheng-, CAO Gang- etc .[J]  Chinese Pharmaceutical Journal, 2012,V47(17): 1345-1349
��
[1] AGATONOVIC-KUSTRIN S�� BERESFORD R. Basic concepts of artificial neural network modeling and its application in pharmaceutical research[J]. J Pharm Biomed Anal�� 2000�� 22(5)��717-772.
[2] YAN P F�� ZHANG C S. Artificial Neural Networks and Evolutionary Computing���˹���������ģ��������㣩[M]. Beijing��Tsinghua University Press�� 2005��19-26.
[3] GUERRA A A�� CAMPILLO N E�� PAEZ J A. Neural computational prediction of oral drug absorption based on CODES 2D descriptors[J]. Eur J Med Chem�� 2010�� 45(3)��930-940.
[4] SHEIKH-BAHAEI S�� ALI K A�� BERA S R�� et al. Predicting human hepatic clearance using hypernet neural networks[A]. 19th International Conference on Software Engineering and Data Engineering(SEDE-2010) [C]. San Francisco�� CA�� USA�� 2010�� 355-359.
[5] SAINI S�� SINGH S K. Quantitative structure pharmacokinetic relationship(QSPkR) of cox-2 inhibitors using artifical neural network[J]. Acta Pharm Sci�� 2009�� 51��313-321.
[6] PAIXA O P�� GOUVEIA L F�� MORAIS J G. Prediction of drug distribution in blood[J]. Eur J Pharm Sci�� 2009�� 36(4-5)�� 544-554.
[7] AGATONOVIC-KUSTRIN S�� TURNER J V�� GLASS B D. Quantitative structure-retention - pharmacokinetic relationship studies[J]. Drug Metab Lett�� 2008�� 2(2)��130-137.
[8] TURNER J V�� MADDALENA D J�� CUTLER D J. Pharmacokinetic parameter prediction from drug structure using artificial neural networks[J]. Int J Pharm�� 2004�� 270(1-2)��209-219.
[9] LI Z R�� HAN L Y�� XUE Y�� et al. Model-molecular descriptor lab��a web-based server for computing structural and physicochemical features of compounds[J]. Biotechnol Bioeng�� 2007�� 97(2)��389-396.
[10] HECHT D�� FOGEL G B. A novel in silico approach to drug discovery via computational intelligence[J]. J Chem Inf Model�� 2009�� 49(4)��1105-1121.
[11] TURNER J V�� MADDALENA D J�� CUTLER D J�� et al. Multiple pharmacokinetic parameter prediction for a series of cephalosporins[J]. J Pharm Sci�� 2003�� 92(3)��552-559.
[12] HASHEMI R R�� YOUNG J F. The prediction of methylmercury elimination half-life in humans using animal data��a neural network/rough sets analysis[J]. J Toxicol Environ Health�� 2003�� 66(23)��2227-2252.
[13] VENG-PEDERSEN P�� MODI N B. Application of neural networks to pharmacodynamics[J]. J Pharm Sci�� 1993�� 82(9)��918-926.
[14] CHEN Y C�� CAO W W�� CAO Y�� et al. Using neural networks to determine the contribution of danshensu to its multiple cardiovascular activities in acute myocardial infarction rats[J]. J Ethnopharmacol�� 2011�� 138��1����126-134.
[15] TOGUN N�� KOSE A�� GUNAY N�� et al. Formulation of effects of atropine�� pralidoxime and magnesium sulfate on cardiac tissue levels of nitric oxide�� malondialdehyde and glutathione in organophosphate poisoning using artificial neural network[J]. Comput Biol Med�� 2010�� 40(1)��29-36.
[16] CAO G�� SHAN Q Y�� ZHANG C R�� et al. Pharmacokinetic parameters of morroniside in iridoid glycosides of Fructus corni processing based on back-propagation neural network[J]. Pharm Biol�� 2011�� 49(9)��989-993.
[17] SONG X L�� NIU X�� SI Y C. Study on proportion of pinellisa decoction for purging stomach-fire�� ginger rind and licorice root with BP artificial neural network[J]. Chin J Chin Pharmacol Ther(�й��ٴ�ҩ��ѧ������ѧ)�� 2005�� 10(5)��527-531.
[18] NG C M. Comparison of neural network�� bayesian�� and multiple stepwise regression- based limited sampling models to estimate area under the curve[J]. Pharmacotherapy�� 2003�� 23(8)��1044-1051.
[19] CHEN M Y�� WANG J�� LIANG W Q. Predition of elimination rate constant of amikacin in neonates with BP neural network[J]. Chin Pharm J(�й�ҩѧ��־)�� 2008�� 43(18)��1420-1423.
[20] PAPPADA S M�� CAMERON B D�� ROSMAN P M�� et al. Neural network- based real-time prediction of glucose in patients with insulin-dependent diabetes[J]. Diabetes Technol Ther�� 2011�� 13(2)��135-141.
[21] MATAS M D�� SHAO Q�� BIDDISCOMBE M F�� et al. Predicting the clinical effect of a short acting bronchodilator in individual patients using artificial neural networks[J]. Eur J Pharm Sci�� 2010�� 41(5)��707-715.
[22] MAGER D E�� SHIREY J D�� COX D�� et al. Mapping the dose-effect relationship of orbofiban from sparse data with an artificial neural network[J]. J Pharm Sci�� 2005�� 94(11)��2475-2486.
[23] BERNO E�� BRAMBILLA L�� CANAPARO R�� et al. Application of probabilistic neural networks to population pharmacokinetics[J]. Neural Networks�� 2003�� 7(20-24)��2637-2642.
[24] GAWEDA A E�� JACOBS A A�� BRIER M E�� et al. Pharmacodynamic population analysis in chronic renal failure using artificial neural networks-a comparative study[J]. Neural Networks�� 2003�� 16(5-6)��841-845.
[25] KANG S H�� POYNTON M R�� KIM K M�� et al. Population pharmacokinetic and pharmacodynamic models of remifentanil in healthy volunteers using artificial neural network analysis[J]. Br J Clin Pharmacol�� 2007�� 64(1)��3-13.
[26] HAIDAR S H�� JOHNSON S B�� FOSSLER M J�� et al. Modeling the pharmacokinetics and pharmacodynamics of a unique oral hypoglycemic agent using neural networks[J]. Pharm Res�� 2002�� 19(1)��87-91.
[27] MOUGIAKAKOU S G�� PROUNTZOU A�� ILIOPOULOU D�� et al. Neural network based glucose-insulin metabolism models for children with type 1 diabetes[A]. Proceedings of the 28th IEEE EMBS annual international conference[C]. New York City�� USA�� 2006��3545-3548.
[28] YU J X�� SHI L M�� WANG R L�� et al. Individual administration model for cyclosporine A established using artificial neural network[J]. Chin Pharm J (�й�ҩѧ��־)�� 2010�� 45(12)��927-930.
[29] YAMAMURA S�� TAKEHIRA R�� KAWADA K�� et al. Application of artificial neural network modelling to identify severely ill patients whose aminoglycoside concentrations are likely to fall below therapeutic concentrations[J]. J Clin Pharm Ther�� 2003�� 28(5)��425-432.
[30] FDA. Guidance for industry population pharmacokinetics. http��//www. fda. gov/downloads/ Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072137. pdf
[31] WANG G J�� LIU X D�� LIU X Q. Pharmacokinetics (ҩ���л����ѧ)[M]. Beijing��Chemical Industry Press�� 2005: 141-142.
[32] LIU C X. Difficulty and hot-points on pharmacokinetics studies of traditional Chinese medicine[J]. Acta Pharm Sin (ҩѧѧ��)�� 2005�� 40(5)��395-401.
[33] HAO H P�� ZHEN C N�� WANG G J. Thoughts and experimental exploration on pharmacokinetic study of herbal medicines with multiple-components and targets[J]. Acta Pharm Sin (ҩѧѧ��)�� 2009�� 44(3)��270-275.
[34] MANDAL U�� GOWDA V�� GHOSH A�� et al. Optimization of metformin HCl 500 mg sustained release matrix tablets using artificial neural network based on multilayer perceptrons model[J]. Chem Pharm Bull�� 2008�� 56(2)��150-155.
[35] BARMPALEXIS P�� KANAZE F I�� KACHRIMANIS K�� et al. Artificial neural networks in the optimization of a nimodipine controlled release tablet formulation[J]. Eur J Pharm Biopharm�� 2010�� 74(2)��316-323.
[36] MATAS M D�� SHAO Q�� RICHARDSON C H�� et al. Evaluation of in vitro in vivo correlations for dry powder inhaler delivery using artificial neural networks[J]. Eur J Pharm Sci�� 2008�� 33(1)��80-90.
[37] BERTRAM J P�� RAUCH M F�� CHANG K�� et al. Factors affecting the stability of nanoemulsions use of artificial neural networks[J]. Pharm Res�� 2010�� 27(1)��82-91.
[38] HADDAD W M�� BAILEY J M�� HAYAKAWA T�� et al. Neural network adaptive output feedback control for intensive care unit sedation and intraoperative anesthesia [J]. IEEE Trans Neural Netw�� 2007�� 18(4)��1049-1066.
[39] YAN L�� SHEIHK-BAHAEI S�� PARK S�� et al. Preditions of hepatic disposition properties using a mechanistically realistic�� physiologically based mode[J]. Drug Metab Dispos�� 2008�� 36(4)��759-768.
[40] PAIX�� O P�� GOUVEIA L F�� MORAIS J A G. Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks[J]. Eur J Pharm Sci�� 2010�� 39(5)��310-321.
[1] ������;����;�;������;л����;����.��ҩ�նԸʲ��ἰ�ʲݴ����������ҩ��ѧ��Ӱ��[J]. �й�ҩѧ��־, 2012,47(8): 599-602
[2] ��С�� ��ӱ ��½�� κӱ�� ��ǿ ���.�������������������Ʊ�����������ҩ��ѧ�о�[J]. �й�ҩѧ��־, 2012,47(7): 524-528
[3] ��Ң ̷־�� ��ҽ�� ������ ��ΰ �ܺ��.Һ��ɫ�״������׷��ⶨ����Ѫ��ά������Ũ�ȼ������Ч�������о�[J]. �й�ҩѧ��־, 2012,47(7): 546-550
[4] ��ƽ ֣�� ����ϼ Ԭ��Ӣ ���� Ǯ���� �㵤 ������ �»� .�������徲����עͷ����ͪ�Ƶ�ҩ��ѧ�о�[J]. �й�ҩѧ��־, 2012,47(4): 291-295
[5] ������ ����Ƽ ���ж� ʩТ�� ������.����Ī˾�����������ڵ������Ч������[J]. �й�ҩѧ��־, 2012,47(4): 296-302
[6] ���� ��ѩ�� ��� ���� ���� ���ٹ� .ע���������������׽ṹ֬������ϵͳ���Ʊ���������ҩ������ҩ��ѧ�о�[J]. �й�ҩѧ��־, 2012,47(4): 287-290
[7] ���� ���� ������ ��־�� ������ .���Ҷ������εĶ������֬�������ҹ������������ڵ�ҩ��ѧ�о�[J]. �й�ҩѧ��־, 2012,47(3): 223-
[8] ¦�� ������ ���� ���� ���� ���� ������ ������.��ͬ����������Ȼ���˨������ҩ��ҩ��ѧ�о�[J]. �й�ҩѧ��־, 2012,47(3): 209-
[9] ������ ����÷ ���� ������ ���ҷ� ʦ�پ�.ע����ͷ����̹�������й����������ڵ�ҩ��ѧ[J]. �й�ҩѧ��־, 2012,47(2): 132-135
[10] ��ӱ ����ѫ ���� ����Ⱥ.����ڷ����컨��-1��������Ѫ�ɷּ�ҩ��ѧ[J]. �й�ҩѧ��־, 2012,47(2): 136-140
[11] ������ ����ΰ ������.���ᴨܺັ���pH������ԭλ��������ѪҺ���Բ�ҩ��ѧ�о�[J]. �й�ҩѧ��־, 2012,47(2): 119-121
[12] �������ŵ���Фѩ�������ȣ������գ����᳼��.����ڷ���������Ҽ���������Ҿ������κ���������ҵ�ҩ��ѧ[J]. �й�ҩѧ��־, 2012,47(17): 1396-1399
[13] ���ȣ��ᷢ��������.�ǻ�ϲ���������Գ�ѭ����������ҩ��ѧ�о�[J]. �й�ҩѧ��־, 2012,47(16): 1307-1312
[14] ���������¹��Σ��ߺ�־�����𻪣�����⣬����Դ.��ЧҺ��ɫ��-�������׼�⼰�������ᷥ����ΤƬ��ҩ��ѧ����Ч��[J]. �й�ҩѧ��־, 2012,47(16): 1323-1327
[15] ���޽������������Ƽ����ϲƽ���ų���������.�����濵�������Ը����˴������ڵ�ҩ��ѧ�����о�[J]. �й�ҩѧ��־, 2012,47(15): 1233-1236
Copyright 2010 by �й�ҩѧ��־