Research Progress of Special Functional Excipients in High-end Pharmaceuticals
HE Liu-ying, YANG Rui, WANG Xiao-feng, XU Kai, WANG Jue, YANG Hui-ying*, XIAO Xin-yue*
NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
Abstract:High-end pharmaceutical preparation is a kind of high-tech preparation that can improve drug efficacy and enhance drug safety, and their development is an indicator to measure the level of a country′s pharmaceutical preparations. The development of high-end pharmaceutical formulations relies on new excipients with special functions. In the past decade, the development and production of excipients for high-end pharmaceutical preparations have developed rapidly. Focusing on the role and application of excipients in the development of traditional Chinese medicine modernization, the innovation of high-end chemical preparations and the production of biological products, this paper tracks the literature about the research progress of functional excipients, comprehensively analyzes the international technical level in related fields, and points out the future development direction of functional excipients in China, in order to inspire and provide reference to the development and application of excipients for high-end pharmaceutical preparations in China.
贺刘莹, 杨锐, 王晓锋, 许凯, 王珏, 杨会英, 肖新月. 高端药物制剂用特殊功能辅料的研究进展[J]. 中国药学杂志, 2023, 58(3): 197-204.
HE Liu-ying, YANG Rui, WANG Xiao-feng, XU Kai, WANG Jue, YANG Hui-ying, XIAO Xin-yue. Research Progress of Special Functional Excipients in High-end Pharmaceuticals. Chinese Pharmaceutical Journal, 2023, 58(3): 197-204.
GU Y G. Development and challenges of high-end pharmaceutical preparations in domestic pharmaceutical enterprises [J]. China Pharm(中国药业), 2021, 30(9): 4-7.
[2]
LIU C X. Innovation of drug release technology and the development of high-end preparations [J]. Sci Technol Rev(科技导报), 2011, 29(27): 3.
[3]
Ch.P(2020) Vol Ⅳ(中国药典2020年版.四部) [S]. 2020: 32.
[4]
ZHANG J J, GAO C F, WANG L Y. Ocular pharmacokinetics and bioavailability of 0.2% ganciclovir in-situ gelling eye drops[J]. Chin J Ophthalmol(中华眼科杂志), 2006, 42(7): 637-641.
[5]
LIANG H H, CAO Y, LI S S, et al. Research progress in oral sustained and controlled release preparations [J]. Mil Med Sci(军事医学), 2021, 45(12): 945-949.
[6]
KEBEBE D, LIU Y, WU Y, et al. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers [J]. Int J Nanomed, 2018, 13:1425-1442. Doi: 10.2147/ijn.s156616.
[7]
SONG Y, LI D, LU Y, et al. Ferrimagnetic mpeg-b-phep copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy [J]. Natl Sci Rev, 2020, 7(4): 723-736.
[8]
LIU X, CHEN L, FANG Q, et al. Review of pharmaceutical excipients effects on drug transports [J]. Chin J Clin Pharmacol(中国临床药理学杂志), 2022, 38(10): 1128-1132.
[9]
Ministry of Industry and Information Technology of the People′s Republic of China, National Development and Reform Commission, Ministry of Science and Technology of the People′s Republic of China, et al. 14th Five-Year Plan for the Development of the Pharmaceutical Industry [EB/OL]. Ministry of Industry and Information Technology of the People′s Republic of China, 2022. https://www.miit.gov.cn/jgsj/ghs/zlygh/art/2022/art_5d5e4f4a945346c7ab261a9fd2669cb5.html.
[10]
MA J W, AN N. Consideration of excipient selection in freeze-dried injections [J]. Chin Pharm J(中国药学杂志), 2020, 55(7): 568-572.
[11]
WANG S, ZHAO Z Q, WANG X L, et al. Qishen yiqi dripping pill for ischemic heart failure:A multicenter prospective cohort study [J]. J Tradit Chin Med(中医杂志), 2022, 63(7): 635-643.
[12]
RONG Y Q. Research status of compound chinese medicine dropping pills [J]. Guangdong Chem Ind(广东化工), 2020, 47(20): 54-55.
[13]
WANG N, LIU X M, QIU H, et al. Impacts of percutaneous penetration enhancers on transdermal absorption of euphol in qisui zhushui gel cream [J]. Hunan J Tradit Chin Med(湖南中医杂志), 2015, 31(7): 166-168.
[14]
LI Z D, WANG H T, SHI X J, et al. Effect of eucalyptus oil on the percutaneous penetration and absorption of clobetasol propionate cream [J]. Chin J Hosp Pharm(中国医院药学杂志), 2001, 21(2): 1-3.
[15]
WANG F, XU B, ZHANG K F, et al. Mechanism of "unification of drugs and excipients" for chinese medicine semi-extract based on powder compression behavior analysis [J]. China J Chin Mater Med(中国中药杂志), 2020, 45(2): 274-284.
[16]
FANG D, ZHANG L, SUN J, et al. Research on "unification of medicines and excipients" nanosystem comprising tea polyphenol and melittin for antitumor therapy [J]. Chin Tradit Herb Drugs(中草药), 2017, 48(16): 3300-3307.
[17]
LI Y, CHEN J S, GUO X, et al. Status quo and analysis of volatile oil in chinese medicine based on"unification of medicine and adjuvant" [J]. Mod Chin Med(中国现代中药), 2021, 24(4): 564-569.
[18]
XU R R, CHEN J S, LI Y, et al. Optimization of preparation technology and evaluation of efficacy of artemisia argyi oil cream based on"unification of medicine and adjuvant" [J]. Mod Chin Med(中国现代中药), 2021, 24(4): 583-588.
[19]
RAN F, ZHANG D K, CI Z M, et al. Research status of high functional co-processed excipients [J]. Chin Pharm J(中国药学杂志), 2020, 55(10): 794-798.
[20]
WANG Y X, ZHAO X, WU B, et al. Preparation of propylene glycol alginate sodium sulfate sustained-release tablets and evaluation of its drug release in vitro [J]. Chin J Mar Drugs(中国海洋药物), 2014, 33(6): 59-64.
[21]
PANG Z. Research progress in nebulized inhalation therapy in pediatric respiratory diseases [J]. Electron J Mod Med Health Res(现代医学与健康研究电子杂志), 2021, 5(22): 129-132.
[22]
ZILLEN D, BEUGELING M, HINRICHS W L J, et al. Natural and bioinspired excipients for dry powder inhalation formulations [J]. Curr Opin Colloid Interface Sci, 2021, 56: 101497. Doi: 10.1016/j.cocis.2021.101497.
[23]
PENG H. The study on Baicalin/Ambroxol lung inhalation preparation [D]. Tianjin:Tianjin University of Traditional Chinese Medicine, 2021.
[24]
Ch.P(2020) VolⅣ(中国药典2020年版.四部) [S]. 2020: 474.
[25]
MA X L, HAN J Q, LIU Z P. Research progress in transdermal administration of local anesthetics [J]. Pract Pharm Clin Rem(实用药物与临床), 2022, 25(6): 557-562.
[26]
WU M, WU M Y, A W J M, et al. Research progress of clinical application of different nano - drug carriers [J]. China Pharm(中国药业), 2022, 31(16): 128-131.
[27]
SINGH S R, ZHANG J, O′DELL C, et al. Effect of polysorbate 80 quality on photostability of a monoclonal antibody [J]. AAPS PharmSciTech, 2012, 13(2): 422-430.
[28]
ZHANG H, HONG S, TAN S S K, et al. Polysorbates versus hydroxypropyl beta-cyclodextrin (hpbetacd): Comparative study on excipient stability and stabilization benefits on monoclonal antibodies [J]. Molecules, 2022, 27(19): 6497. Doi: https://doi.org/10.3390/molecules27196497.
[29]
LARSON N R, WEI Y, PRAJAPATI I, et al. Comparison of polysorbate 80 hydrolysis and oxidation on the aggregation of a monoclonal antibody [J]. J Pharm Sci, 2020, 109(1): 633-639.
[30]
LIU P, DING L C, ZHU J. A review on nano-delivery system for mrna vaccine and its regulatory consideration [J]. Chin Pharm Aff(中国药事), 2022, 36(1): 32-40.
[31]
POLLARD C, REJMAN J, DE HAES W, et al. Type i ifn counteracts the induction of antigen-specific immune responses by lipid-based delivery of mrna vaccines [J]. Mol Ther, 2013, 21(1): 251-259.
[32]
MICHEL T, LUFT D, ABRAHAM M K, et al. Cationic nanoliposomes meet mrna: Efficient delivery of modified mrna using hemocompatible and stable vectors for therapeutic applications [J]. Mol Ther-Nucleic Acids, 2017, 8: 459-468. Doi: https://doi.org/10.1016/j.omtn.2017.07.013.
[33]
WANG Y, SU H H, YANG Y, et al. Systemic delivery of modified mrna encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy [J]. Mol Ther, 2013, 21(2): 358-367.
[34]
MIAO L, LI L, HUANG Y, et al. Delivery of mrna vaccines with heterocyclic lipids increases anti-tumor efficacy by sting-mediated immune cell activation [J]. Nat Biotechnol, 2019, 37(10): 1174-1185.
[35]
RYBAKOVA Y, KOWALSKI P S, HUANG Y, et al. Mrna delivery for therapeutic anti-her2 antibody expression in vivo [J]. Mol Ther, 2019, 27(8): 1415-1423.
[36]
SEDIC M, SENN J J, LYNN A, et al. Safety evaluation of lipid nanoparticle-formulated modified mrna in the sprague-dawley rat and cynomolgus monkey [J]. Vet Pathol, 2017, 55(2): 341-354.
[37]
ZHAO M, LI M, ZHANG Z, et al. Induction of hiv-1 gag specific immune responses by cationic micelles mediated delivery of gag mrna [J]. Drug Deliv, 2016, 23(7): 2596-2607.
[38]
SUNSHINE J C, SUNSHINE S B, BHUTTO I, et al. Poly(beta-amino ester)-nanoparticle mediated transfection of retinal pigment epithelial cells in vitro and in vivo [J]. PLoS One, 2012, 7(5): 37543. Doi: 10.1371/journal.pone.0037543.
[39]
ISLAM M A, REESOR E K G, XU Y, et al. Biomaterials for mrna delivery [J]. Biomater Sci, 2015, 3(12): 1519-1533.
[40]
SIEWERT C, HAAS H, NAWROTH T, et al. Investigation of charge ratio variation in mrna-deae-dextran polyplex delivery systems [J]. Biomaterials, 2019, 192: 612-620. Doi: https://doi.org/10.1016/j.biomaterials.2018.10.020.
[41]
VAN DEN BRAND D, GORRIS M A J, VAN ASBECK A H, et al. Peptide-mediated delivery of therapeutic mrna in ovarian cancer [J]. Eur J Pharm Biopharm, 2019, 141: 180-190. Doi: https://doi.org/10.1016/j.ejpb.2019.05.014.
[42]
LACROIX C, HUMANES A, COIFFIER C, et al. Polylactide-based reactive micelles as a robust platform for mrna delivery [J]. Pharm Res, 2020, 37(2): 30. Doi: https://doi.org/10.1007/s11095-019-2749-6.
[43]
ZHAO W, ZHANG C, LI B, et al. Lipid polymer hybrid nanomaterials for mrna delivery [J]. Cell Mol Bioeng, 2018, 11(5): 397-406.
[44]
KACZMAREK J C, PATEL A K, KAUFFMAN K J, et al. Polymer-lipid nanoparticles for systemic delivery of mrna to the lungs [J]. Angew Chem Int Ed, 2016, 55(44): 13808-13812.
[45]
PERSANO S, GUEVARA M L, LI Z, et al. Lipopolyplex potentiates anti-tumor immunity of mrna-based vaccination [J]. Biomaterials, 2017, 125: 81-89. Doi: 10.1016/j.biomaterials.2017.02.019.
[46]
SU X, FRICKE J, KAVANAGH D G, et al. In vitro and in vivo mrna delivery using lipid-enveloped ph-responsive polymer nanoparticles [J]. Mol Pharm, 2011, 8(3): 774-787.
[47]
KAUFFMAN K J, DORKIN J R, YANG J H, et al. Optimization of lipid nanoparticle formulations for mrna delivery in vivo with fractional factorial and definitive screening designs [J]. Nano Lett, 2015, 15(11): 7300-7306.
[48]
LUO X, WANG W, DORKIN J R, et al. Poly(glycoamidoamine) brush nanomaterials for systemic sirna delivery in vivo [J]. Biomate Sci, 2017, 5(1): 38-40.
[49]
UDHAYAKUMAR V K, DE BEUCKELAER A, MCCAFFREY J, et al. Arginine-rich peptide-based mrna nanocomplexes efficiently instigate cytotoxic t cell immunity dependent on the amphipathic organization of the peptide [J]. Adv Healthcare Mater, 2017, 6(13): 1601412. Doi: 10.1002/adhm.201601412.
[50]
ZHANG Y, SUN C, WANG C, et al. Lipids and lipid derivatives for rna delivery [J]. Chem Rev, 2021, 121(20): 12181-12277.
[51]
VANIJCHAROENKARN K, LEE F E H, MARTIN L, et al. Immediate reactions after the first dose of severe acute respiratory syndrome coronavirus 2 (sars-cov-2) messenger rna vaccines do not preclude second-dose administration [J]. Clin Infect Dis, 2021, 73(11): 2108-2111.
[52]
MIYAZAKI T, UCHIDA S, NAGATOISHI S, et al. Polymeric nanocarriers with controlled chain flexibility boost mrna delivery in vivo through enhanced structural fastening [J]. Adv Healthcare Mate, 2020, 9(16): 2000538. Doi: 10.1002/adhm.202000538.
[53]
SOLIMAN O Y, ALAMEH M G, DE CRESENZO G, et al. Efficiency of chitosan/hyaluronan-based mrna delivery systems in vitro: Influence of composition and structure [J]. J Pharm Sci, 2020, 109(4): 1581-1593.
[54]
ZHAO T, CHEN X J. Progress in pharmacokinetics of bio-macromolecules [J]. Prog Pharm Sci(药学进展), 2018, 42(8): 592-598.
[55]
XIAO Y, TANG Z, WANG J, et al. Oral insulin delivery platforms: Strategies to address the biological barriers [J]. Angew Chem Int Ed, 2020, 59(45): 19787-19795.
[56]
FAN W, XIA D, ZHU Q, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery [J]. Biomaterials, 2018, 151: 13-23. Doi: 10.1016/j.biomaterials.2017.10.022.
[57]
MORTENSEN J S, BOHR S S R, HARLOFF-HELLEBERG S, et al. Physical and barrier changes in gastrointestinal mucus induced by the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (snac) [J]. J Controlled Release, 2022, 352: 163-178. Doi: 10.1016/j.jconrel.2022.09.034.