Research Progress of Anti-Aging Related Targets and Anti-Aging Drugs
YANG Yi-hui, REN Li-wen, ZHENG Xiang-jin, LIU Jin-yi, LI Sha, LI Wan, FU Wei-qi, WANG Jin-hua*, DU Guan-hua*
Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:Aging is an irreversible process that RESULTS in gradual decline of physiological function with the growth of age. With the progress of research on aging related mechanisms, it has become a hot issue in the field of anti-aging research to find effective anti-aging drugs to delay aging and prolong life by means of drug intervention. In recent years, a series of diverse Compounds from different sources have been found to have potential anti-aging activities, and some of them have entered the stage of clinical trials, which greatly promoted the continuous progress of anti-aging drugs. The concept of aging and its related signaling pathways and targets is introduced, and the advanced research progress of anti-aging drugs in recent years is summarized. Finally, the future development trend of anti-aging study and anti-aging drugs is discussed.
杨艺辉, 任利文, 郑湘锦, 刘金宜, 李莎, 李婉, 富炜琦, 王金华, 杜冠华. 抗衰老靶点及药物的研究进展[J]. 中国药学杂志, 2021, 56(16): 1282-1290.
YANG Yi-hui, REN Li-wen, ZHENG Xiang-jin, LIU Jin-yi, LI Sha, LI Wan, FU Wei-qi, WANG Jin-hua, DU Guan-hua. Research Progress of Anti-Aging Related Targets and Anti-Aging Drugs. Chinese Pharmaceutical Journal, 2021, 56(16): 1282-1290.
QIAN M, LIU B. Pharmaceutical Intervention of Aging[J]. Adv Exp Med Biol, 2018,1086(15): 235-254.
[2]
WYSS-CORAY T. Ageing, neurodegeneration and brain rejuvenation[J]. Nature, 2016, 539(7628):180-186.
[3]
MARTA G-F, DIAZ-RUIZ A, HAUSER D, et al. The road ahead for health and lifespan interventions[J]. Ageing Res Rev, 2020, 59(101037): 1-19.
[4]
GONOS E S, CHONDROGIANNI N, DJORDJEVIC A M. Where ageing goes nowadays: Mechanisms, pathways, biomarkers and anti-ageing strategies[J]. Mech Ageing Dev, 2019, 177 (1):1-3.
[5]
TACUTU R, THORNTON D, JOHNSON E, et al. Human ageing genomic resources: new and updated databases[J]. Nucleic Acids Res, 2018, 46(1):1083-1090.
[6]
SUN X , CHEN W D , WANG Y D. DAF-16/FOXO transcription factor in aging and longevity[J]. Front Pharmacol, 2017, 8(548): 1-8.
[7]
KENYON C, CHANG J, GENSCH E, et al. A C. elegans mutant that lives twice as long as wild type[J]. Nature, 1993, 366(6454): 461-464.
[8]
OGG S, PARADIS S, GOTTLIEB S, et al. The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans[J]. Nature, 1997, 389(6654): 994-999.
[9]
SUN X, CHEN W D, WANG Y D. DAF-16/FOXO Transcription Factor in Aging and Longevity[J]. Front Pharmacol, 2017, 8(548):1-8.
[10]
BRUNET A, BONNI A, ZIGMOND M J, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor[J]. Cell, 1999, 96(6): 857-868.
[11]
GUARENTE L, KENYON C. Genetic pathways that regulate ageing in model organisms[J]. Nature, 2000, 408(6809): 255-262.
[12]
FABRIZIO P, POZZA F, PLETCHER S D, et al. Regulation of longevity and stress resistance by Sch9 in yeast[J]. Science, 292(5515):288-290.
[13]
CLANCY D J. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein[J]. Science, 2001, 292(5514):104-106.
[14]
TATAR M, KOPELMAN A, EPSTEIN D, et al. A mutant drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function[J]. Science, 2001, 292(5514): 107-110.
[15]
WILLCOX B J, DONLON T A, HE Q, et al. FOXO3A genotype is strongly associated with human longevity[J]. Proc Natl Acad Sci USA, 2008, 105(37): 13987-13992.
[16]
BARTKE A. Impact of reduced insulin-like growth factor-1/insulin signaling on aging in mammals: novel findings[J]. Aging cell, 2008, 7(3): 285-90.
[17]
HEITMAN J, MOVVA N R, HALL M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J]. Science, 1991, 253(5022): 905-909.
[18]
MANNICK J B, DEL GIUDICE G, LATTANZI M, et al. mTOR inhibition improves immune function in the elderly[J]. Sci Transl Med, 2014, 6(268): 1-7.
[19]
AYLETT C H, SAUER E, IMSENG S, et al. Architecture of human mTOR complex 1[J]. Science, 2016, 351(6268): 48-52.
[20]
WEICHHART T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review[J]. Gerontology, 2018, 64(2): 127-134.
[21]
VELLAI T, TAKACS-VELLAI K, ZHANG Y, et al. Genetics: influence of TOR kinase on lifespan in C. elegans[J]. Nature, 2003, 426(6967): 620.
[22]
KAPAHI P, ZID B M, HARPER T, et al. Regulation of lifespan in drosophila by modulation of genes in the TOR signaling pathway[J]. Curr Biol, 2004, 14(10): 885-890.
[23]
KAEBERLEIN M, POWERS R W, 3RD, STEFFEN K K, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients[J]. Science, 2005, 310(5751): 1193-1196.
[24]
WU J J, LIU J, CHEN E B, et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression[J]. Cell Rep, 2013, 4(5): 913-920.
[25]
ZID B M, ROGERS A N, KATEWA S D, et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila[J]. Cell, 2009, 139(1): 149-160.
[26]
HANSEN M, RUBINSZTEIN D C, WALKER D W. Autophagy as a promoter of longevity: insights from model organisms[J]. Nat Rev Mol Cell Biol, 2018, 19(9): 579-593.
[27]
SAXTON R A, SABATINI D M. mTOR signaling in growth metabolism, and disease[J]. Cell, 2017, 168(6): 960-976.
[28]
VASSILOPOULOS A, FRITZ K S, PETERSEN D R, et al. The human sirtuin family: evolutionary divergences and functions[J]. Hum Genomics, 2011, 5(5): 485-496.
[29]
O'CALLAGHAN C, VASSILOPOULOS A. Sirtuins at the crossroads of stemness, aging, and cancer[J]. Aging cell, 2017, 16(6): 1208-1218.
[30]
KAEBERLEIN M, MCVEY M, GUARENTE L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms[J]. Genes Dev, 1999, 13(19): 2570-2580.
[31]
MICHAN S, SINCLAIR D. Sirtuins in mammals: insights into their biological function[J]. Biochem J, 2007, 404(1): 1-13.
[32]
HOUTKOOPER R H, PIRINEN E, AUWERX J. Sirtuins as regulators of metabolism and healthspan[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 225-238.
[33]
BORDONE L, COHEN D, ROBINSON A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction[J]. Aging cell, 2007, 6(6): 759-767.
[34]
KANFI Y, NAIMAN S, AMIR G, et al. The sirtuin SIRT6 regulates lifespan in male mice[J]. Nature, 2012, 483(7388): 218-221.
[35]
HEBERT A S, DITTENHAFER-REED K E, YU W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome[J]. Molecular cell, 2013, 49(1): 186-199.
[36]
SATOH A, BRACE C S, BEN-JOSEF G, et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus[J]. J Neurosci, 2010, 30(30): 10220-10232.
[37]
TOIBER D, SEBASTIAN C, MOSTOSLAVSKY R. Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance[J]. Handb Exp Pharmacol, 2011, 206(8):189-224.
[38]
GIANNAKOU M E, PARTRIDGE L. The interaction between FOXO and SIRT1: tipping the balance towards survival[J]. Trends Cell Biol, 2004, 14(8): 408-412.
[39]
LUO J, NIKOLAEV A Y, IMAI S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress[J]. Cell, 2001, 107(2): 137-148.
[40]
BLUM C A, ELLIS J L, LOH C, et al. SIRT1 modulation as a novel approach to the treatment of diseases of aging[J]. J Med Chem, 2011, 54(2): 417-432.
[41]
VERDIN E. NAD in aging, metabolism, and neurodegeneration[J]. Science, 2015, 350(6265): 1208-1213.
[42]
LANDRY J, SUTTON A, TAFROV S T, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases[J]. Proc Natl Acad Sci U S A, 2000, 97(11): 5807-5811.
[43]
COHEN H Y, MILLER C, BITTERMAN K J, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase[J]. Science, 2004, 305(5682): 390-392.
[44]
MOUCHIROUD L, HOUTKOOPER R H, MOULLAN N, et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling[J]. Cell, 2013, 154(2): 430-441.
[45]
HARDIE D G, ROSS F A, HAWLEY S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 251-262.
[46]
XIAO B, SANDERS M J, UNDERWOOD E, et al. Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011, 472(7342): 230-233.
[47]
SALMINEN A, KAARNIRANTA K, KAUPPINEN A. Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways[J]. Ageing Res Rev, 2016, 28(6):15-26.
[48]
APFELD J, O'CONNOR G, MCDONAGH T, et al. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans[J]. Genes Dev, 2004, 18(24): 3004-3009.
[49]
SALMINEN A, KAARNIRANTA K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network[J]. Ageing Res Rev, 2012, 11(2): 230-241.
[50]
FUNAKOSHI M, TSUDA M, MURAMATSU K, et al. A gain-of-function screen identifies wdb and lkb1 as lifespan-extending genes in Drosophila[J]. Biochem Biophys Res Commun, 2011, 405(4): 667-672.
[51]
MARTIN-MONTALVO A, MERCKEN E M, MITCHELL S J, et al. Metformin improves healthspan and lifespan in mice[J]. Nat Commun, 2013, 4(2192):1-9.
[52]
GORGOULIS V, ADAMS P D, ALIMONTI A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827.
[53]
AMAYA-MONTOYA M, PÉREZ-LONDOÑO A, GUATIBONZA-GARCíA V, et al. Cellular senescence as a therapeutic target for age-related diseases: a review[J]. Adv Ther, 2020, 37(4): 1407-1424.
[54]
ZHENG W G, QIN X M, GAO L, et al. Research advances in understanding the senescence-associated secretory phenotype and relevant drugs[J]. Acta Pharm Sin(药学学报), 2020, 55(1): 8-14.
[55]
HERNANDEZ-SEGURA A, NEHME J, DEMARIA M. Hallmarks of Cellular Senescence[J]. Trends Cell Biol, 2018, 28(6): 436-453.
[56]
PAEZ-RIBES M, GONZÁLEZ-GUALDA E, DOHERTY G J, et al. Targeting senescent cells in translational medicine[J]. EMBO Mol Med, 2019, 11(12): 1-10.
[57]
CHILDS B G, GLUSCEVIC M, BAKER D J, et al. Senescent cells: an emerging target for diseases of ageing[J]. Nat Rev Drug Discov, 2017, 16(10): 718-735.
[58]
SHAN T J, SUN J, LIANG H H. Progress in the study of association between cellular senescence and organ fibrosis[J]. Acta Pharm Sin(药学学报), 2019, 54(9): 1531-1537.
[59]
BAKER D J, CHILDS B G, DURIK M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan[J]. Nature, 2016, 530(7589): 184-189.
[60]
HE S, SHARPLESS N E. Senescence in health and disease[J]. Cell, 2017, 169(6): 1000-1011.
[61]
ROLT A, COX L S. Structural basis of the anti-ageing effects of polyphenolics: mitigation of oxidative stress[J]. BMC Chem, 2020, 14(50):1-13.
[62]
AGRAWAL M. Natural polyphenols based new therapeutic avenues for advanced biomedical applications[J]. Drug Metab Rev, 2015, 47(4): 420-430.
[63]
WAHAB A, GAO K, JIA C, et al. Significance of resveratrol in clinical management of chronic diseases[J]. Molecules, 2017, 22(1329): 1-19.
[64]
LI Y R, LI S, LIN C C. Effect of resveratrol and pterostilbene on aging and longevity[J]. BioFactors, 2018, 44(1): 69-82.
[65]
ZIA A, FARKHONDEH T, POURBAGHER-SHAHRI A M, et al. The role of curcumin in aging and senescence: molecular mechanisms[J]. Biomed Pharmacother, 2021, 134:111119.
[66]
PIETSCH K, SAUL N, MENZEL R, et al. Quercetin mediated lifespan extension in caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43[J]. Biogerontology, 2009, 10(5): 565-578.
[67]
ALUGOJU P, JANARDHANSHETTY S S, SUBARAMANIAN S, et al. Quercetin protects yeast saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronological lifespan[J]. Curr Microbiol, 2018, 75(5): 519-530.
[68]
PROSHKINA E, LASHMANOVA E, DOBROVOLSKAYA E, et al. Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in drosophila melanogaster[J]. Front Pharmacol, 2016, 7(505): 1-16.
[69]
HICKSON L J, LANGHI PRATA L G P, BOBART S A, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease[J]. EBioMedicine, 2019, 47: 446-456.
[70]
YOUSEFZADEH M J, ZHU Y, MCGOWAN S J, et al. Fisetin is a senotherapeutic that extends health and lifespan[J]. EBio Medicine, 2018, 36:18-28.
[71]
WANG H, LIU J, LI T, et al. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans[J]. Food Funct, 2018, 9(10): 5273-5282.
[72]
SONG B, ZHENG B, LI T, et al. Raspberry extract promoted longevity and stress tolerance via the insulin/IGF signaling pathway and DAF-16 in Caenorhabditis elegans[J]. Food Funct, 2020, 11(4): 3598-3609.
[73]
YOO Y J, KIM H, PARK S R, et al. An overview of rapamycin: from discovery to future perspectives[J]. J Ind Microbiol Biotechnol, 2017, 44(4): 537-553.
[74]
CAMPISI J, KAPAHI P, LITHGOW G J, et al. From discoveries in ageing research to therapeutics for healthy ageing[J]. Nature, 2019, 571(7764): 183-192.
[75]
URFER S R, KAEBERLEIN T L, MAILHEAU S, et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs[J]. GeroScience, 2017, 39(2): 117-127.
[76]
SU Y, WANG T, WU N, et al. Alpha-ketoglutarate extends drosophila lifespan by inhibiting mTOR and activating AMPK[J]. Aging, 2019, 11(12): 4183-4197.
[77]
ASADI SHAHMIRZADI A, EDGAR D, LIAO C Y, et al. Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice[J]. Cell Metab, 2020, 32(3): 447-456.
[78]
QIAN M, LIU B. Advances in pharmacological interventions of aging in mice[J]. Transl Med Aging, 2019, 3(1):116-120.
[79]
MADEO F, EISENBERG T, PIETROCOLA F, et al. Spermidine in health and disease[J]. Science, 2018, 359(6374): 1-10.
[80]
MADEO F, BAUER M A, CARMONA-GUTIERREZ D, et al. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans?[J]. Autophagy, 2019, 15(1): 165-168.
[81]
BÜCHTER C, ZHAO L, HAVERMANN S, et al. TSG (2, 3, 5, 4'-Tetrahydroxystilbene-2-O-β-D-glucoside) from the Chinese herb Polygonum multiflorum increases life span and stress resistance of Caenorhabditis elegans[J]. Oxid Med Cell Longev, 2015, 2015:124357.
[82]
ZHOU X, YANG Q, XIE Y, et al. Tetrahydroxystilbene glucoside extends mouse life span via upregulating neural klotho and downregulating neural insulin or insulin-like growth factor 1[J]. Neurobiol Aging, 2015, 36(3): 1462-1470.
[83]
CUONG V T, CHEN W, SHI J, et al. The anti-oxidation and anti-aging effects of ganoderma lucidum in caenorhabditis elegans[J]. Exp Gerontol, 2019, 117(3):99-105.
[84]
DANG Y, AN Y, HE J, et al. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression[J]. Aging cell, 2020, 19(1): e13060.
[85]
SOUKAS A A, HAO H, WU L. Metformin as anti-aging therapy: is it for everyone?[J]. Trends Endocrinol Metab, 2019, 30(10): 745-755.
[86]
KULKARNI A S, GUBBI S, BARZILAI N. Benefits of metformin in attenuating the hallmarks of aging[J]. Cell Metab, 2020, 32(1): 15-30.
[87]
BANNISTER C A, HOLDEN S E, JENKINS-JONES S, et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls[J]. Diabetes Obes Metab, 2014, 16(11): 1165-11673.
[88]
KIRKLAND J L, TCHKONIA T. Senolytic drugs: from discovery to translation[J]. J Intern Med, 2020, 288(5): 518-536.
[89]
XU M, PIRTSKHALAVA T, FARR J N, et al. Senolytics improve physical function and increase lifespan in old age[J]. Nat Med, 2018, 24(8): 1246-1256.
[90]
CHING T T, CHIANG W C, CHEN C S, et al. Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity[J]. Aging cell, 2011, 10(3): 506-519.
[91]
WU Q, LIAN T, FAN X, et al. 2, 5-Dimethyl-celecoxib extends drosophila life span via a mechanism that requires insulin and target of rapamycin signaling[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(10): 1334-1341.
[92]
HANEFELD M, SCHAPER F. Acarbose: oral anti-diabetes drug with additional cardiovascular benefits[J]. Expert Rev Cardiovasc Ther, 2008, 6(2): 153-163.
[93]
DODDS S G, PARIHAR M, JAVORS M, et al. Acarbose improved survival for Apc+/Min mice[J]. Aging cell, 2020, 19(2): e13088.
[94]
YOSEF R, PILPEL N, TOKARSKY-AMIEL R, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL[J]. Nat Commun, 2016, 7:11190.
[95]
CAI Y, ZHOU H, ZHU Y, et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice[J]. Cell Res, 2020, 30(7): 574-589.
[96]
CASTILLO-QUAN J I, LI L, KINGHORN K J, et al. Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis[J]. Cell Rep, 2016, 15(3): 638-650.
[97]
BAAR M P, BRANDT R M C, PUTAVET D A, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging[J]. Cell, 2017, 169(1): 132-147.
[98]
MÖLLER N P, SCHOLZ-AHRENS K E, ROOS N, et al. Bioactive peptides and proteins from foods: indication for health effects[J]. Eur J Nutr, 2008, 47(4): 171-182.
[99]
BHULLAR K S, WU J. Dietary peptides in aging: evidence and prospects[J]. Food Sci Hum Well(食品科学与人类健康), 2020, 9(1): 1-7.
[100]
SU H L, BAO Y Z, ZHANG J, et al. Protective effects of carnosic acid against aging in a premature cellular senescence model and in a D-galactose induced mouse model[J]. Acta Pharm Sin(药学学报), 2020, 55(5): 915-921.
[101]
RAHIMI V B, ASKARI V R, MOUSAVI S H. Ellagic acid reveals promising anti-aging effects against D-galactose-induced aging on human neuroblastoma cell line, SH-SY5Y: A mechanistic study[J]. Biomed Pharmacother, 2018, 108: 1712-1724.
[102]
KONG S Z, LI J C, LI S D, et al. Anti-aging effect of chitosan oligosaccharide on D-galactose-induced subacute aging in mice[J]. Mar Drugs, 2018, 16(6):1-13.
[103]
BAO X W, LI J Y, REN W, et al. Antioxidant effects of hippophae rhamnoides polysaccharide on aging mouse induced by D-galactose[J]. Sci Tech Food Ind(食品工业科技), 2020, 41(4): 293-297
[104]
TANG Y, ZHU Z Y, LIU Y, et al. The chemical structure and anti-aging bioactivity of an acid polysaccharide obtained from rose buds[J]. Food Funct, 2018, 9(4): 2300-2312.
[105]
FENG S, CHENG H, XU Z, et al. Thermal stress resistance and aging effects of panax notoginseng polysaccharides on caenorhabditis elegans[J]. Int J Biol Macromol, 2015, 81(12): 188-194.
[106]
GUO K, SU L, WANG Y, et al. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides[J]. Food Funct, 2020, 11(6): 5004-5016.
[107]
KIM S J, BEAK S M, PARK S K. Supplementation with triptolide increases resistance to environmental stressors and lifespan in C. elegans[J]. J Food Sci, 2017, 82(6): 1484-1490.
[108]
WANG E, WINK M. Chlorophyll enhances oxidative stress tolerance in caenorhabditis elegans and extends its lifespan[J]. Peer J, 2016, 4:e1879.
[109]
OH S I, PARK J K, PARK S K. Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in caenorhabditis elegans[J]. Clinics, 2015, 70(5): 380-386.
[110]
AYYADEVARA S, BHARILL P, DANDAPAT A, et al. Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of caenorhabditis elegans[J]. Antioxid Redox Signal, 2013, 18(5): 481-490.
[111]
HE C, TSUCHIYAMA S K, NGUYEN Q T, et al. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import[J]. PLoS Genet, 2014, 10(12): 1-16.
[112]
KAVIANI E, RAHMANI M, KAEIDI A, et al. Protective effect of atorvastatin on D-galactose-induced aging model in mice[J]. Behav Brain Res, 2017, 334(9): 55-60.
[113]
SHEN D, LI H, ZHOU R, et al. Pioglitazone attenuates aging-related disorders in aged apolipoprotein E deficient mice[J]. Exp Gerontol, 2018, 102(2): 101-108.
[114]
ALAVEZ S, VANTIPALLI M C, ZUCKER D J, et al. AmyloiD-binding compounds maintain protein homeostasis during ageing and extend lifespan[J]. Nature, 2011, 472(7342): 226-229.
[115]
SHEN C Y, JIANG J G, YANG L, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery[J]. Br J Pharmacol, 2017, 174(11): 1395-1425.
[116]
LI M R, ZHOU Y Z, DU G H, et al. Research progress about the anti-aging effect and mechanism of flavonoids from traditional Chinese medicine[J]. Acta Pharm Sin(药学学报), 2019, 54(8): 1382-1391.
[117]
LUCANIC M, PLUMMER W T, CHEN E, et al. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects[J]. Nat Commun, 2017, 8:14256.
[118]
FAN X, TAKAHASHI-YANAGA F, MORIMOTO S, et al. Celecoxib and 2,5-dimethyl-celecoxib prevent cardiac remodeling inhibiting Akt-mediated signal transduction in an inherited dilated cardiomyopathy mouse model[J]. J Pharmacol Exp Ther, 2011, 338(1): 2-11.
[119]
MALLIKARJUN V, SWIFT J. Therapeutic manipulation of ageing: repurposing old dogs and discovering new tricks[J]. EBioMedicine, 2016, 14(12):24-31.
[120]
KIRKLAND J L, PETERSON C. Healthspan, translation, and new outcomes for animal studies of aging[J]. J Gerontol A Biol Sci Med Sci, 2009, 64(2): 209-212.
[121]
ZHAVORONKOV A, MAMOSHINA P, VANHAELEN Q, et al. Artificial intelligence for aging and longevity research: recent advances and perspectives[J]. Ageing Res Rev, 2019, 49(1):49-66.