Advances in Drug Delivery for the Treatment of Posterior Eye Segment Neovascular Diseases
SUN Ying, WANG Feng-shan*
Institute of Biochemical and Biotechnological Drugs, Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:Due to the complex of the ocular structure, the treatment of the posterior eye segment neovascular diseases has been a hot and difficult point in the field of ophthalmic disease and correspongding drug research. The clinical treatment methods for this kind of diseases, such as intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) drugs, are usually costly and have potential side-effects. Researchers have explored a series of treatment methods with better patient compliance, higher drug concentration in the posterior eye segment and better therapeutic effect. In order to research and develop the ideal drugs for the treatment of the posterior eye segment neovascular diseases, we review the main challenges and the advances in drug delivery for the treatment of this kind of diseases in this paper.
孙莹, 王凤山. 治疗眼后段新生血管疾病给药途径的研究进展[J]. 中国药学杂志, 2020, 55(12): 973-978.
SUN Ying, WANG Feng-shan. Advances in Drug Delivery for the Treatment of Posterior Eye Segment Neovascular Diseases. Chinese Pharmaceutical Journal, 2020, 55(12): 973-978.
JANAGAM D R, WU L, LOWE T L. Nanoparticles for drug delivery to the anterior segment of the eye[J]. Adv Drug Deliv Rev,2017,122:31-64.
[2]
CAMPOCHIARO P A, HACKETT S F. Ocular neovascularization: a valuable model system[J]. Oncogene,2003,22(42):6537-6548.
[3]
MELNIKOVA I. Wet age-related macular degeneration[J]. Nat Rev Drug Discov,2005,4(9):711-712.
[4]
SMITH A G, KAISER P K. Emerging treatments for wet age-related macular degeneration[J]. Expert Opin Emerg Drugs,2014,19(1):157-164.
[5]
KAISER P K. Emerging therapies for neovascular age-related macular degeneration: drugs in the pipeline[J]. Ophthalmology,2013,120(5):S11-S15.
[6]
TAO W. Application of encapsulated cell technology for retinal degenerative diseases[J]. Expert Opin Biol Ther, 2006, 6(7):717-726.
[7]
BATTAGLIA L, SERPE L, FOGLIETTA F. Application of lipid nanoparticles to ocular drug delivery[J]. Expert Opin Drug Del,2016,13(12):1743-1757.
[8]
BASHIR H, SEYKORA J T, LEE V. Invisible shield: review of the corneal epithelium as a barrier to UV radiation, pathogens, and other environmental stimuli[J]. J Ophthalmic Vis Res,2017,12(3):305-311.
[9]
EDWARD A, PRAUSNITZ M R. Predicted permeability of the cornea to topical drugs[J]. Pharm Res,2001,18(11):1497-1508.
[10]
MAICHUK I, IUZHAKOV A M, LIUDOVSKAIA L A. Relation between pharmacokinetics of an antibiotic in ocular fluids and the method of administration and dosage form of gentamycin[J]. Antibiotiki,1984,29(5):386-390.
[11]
RAVIOLA G. The structural basis of the blood-ocular barriers[J]. Exp Eye Res,1977,25:27-63.
[12]
DEL A E, RIMPELA A K, HEIKKINEN E. Pharmacokinetic aspects of retinal drug delivery[J]. Prog Retin Eye Res,2017,57:134-185.
[13]
PITKANEN L, RANTA V P, MOILANEN H. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity[J]. Invest Ophthalmol Vis Sci,2005,46(2):641-646.
[14]
HIRAL J, SHAH J N S. Nanoparticulate transscleral ocular drug delivery[J]. J Biomol Res Ther,2014,3(3):1-14.
[15]
EDELHAUSER H F, ROWE-RENDLEMAN C L, ROBINSON M R. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications[J]. Invest Ophthalmol Vis Sci,2010,51(11):5403-5420.
[16]
GAUDANA R, JWALA J, BODDU S H. Recent perspectives in ocular drug delivery[J]. Pharm Res,2009,26(5):1197-1216.
[17]
DANIS R, MCLAUGHLIN M M, TOLENTINO M. Pazopanib eye drops: a randomised trial in neovascular age-related macular degeneration[J]. Br J Ophthalmol,2014,98(2):172-178.
[18]
SUDA K, MURAKAMI T, GOTOH N. High-density lipoprotein mutant eye drops for the treatment of posterior eye diseases[J]. J Controlled Release,2017,266:301-309.
[19]
GREEN M, LOEWENSTEIN P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein[J]. Cell,1988,55(6):1179-1188.
[20]
LEIFERT J A, WHITTON J L. "Translocatory proteins" and "protein transduction domains": a critical analysis of their biological effects and the underlying mechanisms[J]. Mol Ther,2003,8(1):13-20.
[21]
KAMEI N, MORISHITA M, EHARA J. Permeation characteristics of oligoarginine through intestinal epithelium and its usefulness for intestinal peptide drug delivery[J]. J Controlled Release,2008,131(2):94-99.
[22]
LI Y, LI L, LI Z. Tat PTD-Endostatin-RGD: a novel protein with anti-angiogenesis effect in retina via eye drops[J]. Biochim Biophys Acta,2016,1860(10):2137-2147.
[23]
ZHANG X, LI Y, CHENG Y. Tat PTD-endostatin: a novel anti-angiogenesis protein with ocular barrier permeability via eye-drops[J]. Biochim Biophys Acta,2015,1850(6):1140-1149.
[24]
JANORIA K G, GUNDA S, BODDU S H. Novel approaches to retinal drug delivery[J]. Expert Opin Drug Deliv,2007,4(4):371-388.
[25]
CONLEY S M, NAASH M I. Nanoparticles for retinal gene therapy[J]. Prog Retin Eye Res,2010,29(5):376-397.
[26]
GAUDANA R, ANANTHULA H K, PARENKY A. Ocular drug delivery[J]. Aaps J,2010,12(3):348-360.
[27]
WEIJTENS O, SCHOEMAKER R C, LENTJES E G. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose[J]. Ophthalmology,2000,107(10):1932-1938.
[28]
RANTA V P, URTTI A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling[J]. Adv Drug Deliv Rev,2006,58(11):1164-1181.
[29]
CHIANG B, JUNG J H, PRAUSNITZ M R. The suprachoroidal space as a route of administration to the posterior segment of the eye[J]. Adv Drug Deliv Rev,2018,126:58-66.
[30]
TETZ M, RIZZO S, AUGUSTIN A J. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of european treatment results[J]. Ophthalmologica,2012,227(4):183-189.
[31]
KATO A, KIMURA H, OKABE K. Suppression of laser-induced choroidal neovascularization by posterior sub-tenon administration of triamcinolone acetonide[J]. Retina,2005,25(4):503-509.
[32]
KATOME T, NAITO T, NAGASAWA T. Efficacy of combined photodynamic therapy and sub-Tenon's capsule injection of triamcinolone acetonide for age-related macular degeneration[J]. J Med Invest,2009,56(3-4):116-119.
[33]
YOSHIZAWA C, SAITO W, HIROSE S. Photodynamic therapy combined with intravitreal bevacizumab and sub-tenon triamcinolone acetonide injections for age-related macular degeneration[J]. Jpn J Ophthalmol,2013,57(1):68-73.
[34]
LEVIN D S, HAN D P, DEV S. Subtenon's depot corticosteroid injections in patients with a history of corticosteroid-induced intraocular pressure elevation[J]. Am J Ophthalmol,2002,133(2):196-202.
[35]
CARRASQUILLO K G, RICKER J A, RIGAS I K. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres[J]. Invest Ophthalmol Vis Sci,2003,44(1):290-299.
[36]
O'NEIL E C, HUANG J, SUHLER E B. Iontophoretic delivery of dexamethasone phosphate for non-infectious, non-necrotising anterior scleritis, dose-finding clinical trial[J]. Br J Ophthalmol,2018,102(8):1011-1013.
[37]
GRATIERI T, SANTER V, KALIA Y N. Basic principles and current status of transcorneal and transscleral iontophoresis[J]. Expert Opin Drug Deliv,2017,14(9):1091-1102.
[38]
THANOS C G, BELL W J, O'ROURKE P. Sustained secretion of ciliary neurotrophic factor to the vitreous, using the encapsulated cell therapy-based NT-501 intraocular device[J]. Tissue Eng,2004,10(11-12):1617-1622.
[39]
LIM J I, NIEC M, WONG V. One year results of a phase 1 study of the safety and tolerability of combination therapy using sustained release intravitreal triamcinolone acetonide and ranibizumab for subfoveal neovascular AMD[J]. Br J Ophthalmol,2015,99(5):618-623.
[40]
RUPENTHAL I D. Drug-device combination approaches for delivery to the eye[J]. Curr Opin Pharmacol,2017,36:44-51.
[41]
QUERQUES L, QUERQUES G, LATTANZIO R. Repeated intravitreal dexamethasone implant [Ozurdex(R)] for retinal vein occlusion[J]. Ophthalmologica,2013,229(1):21-25.
[42]
CAPUANO V, SERRA R, OUBRAHAM H. Dexamethasone intravitreal implant for choroidal neovascularization during pregnancy[J]. Retin Cases Brief Rep,2017:1.
[43]
GIANCIPOLI E, PINNA A, BOSCIA F. Intravitreal dexamethasone in patients with wet age-related macular degeneration resistant to anti-VEGF: a prospective pilot study[J]. J Ophthalmol,2018,2018(9):1-8.
[44]
SUN R, TANG Z, WANG Q. New dosage forms for ocular administration[J]. Chin Pharm J(中国药学杂志), 2016,51(23):1993-1998.
[45]
PECHAN P, RUBIN H, LUKASON M. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization[J]. Gene Ther,2009,16(1):10-16.
[46]
HEIER J S, KHERANI S, DESAI S. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial[J]. Lancet,2017,390(10089):50-61.
[47]
FITZGERALD J T, SAUNDERS L, RIDGE B. Severe intraocular pressure response to periocular or intravitreal steroid treatment in Australia and New Zealand: data from the Australian and New Zealand Ophthalmic Surveillance Unit[J]. Clin Exp Ophthalmol,2015,43(3):234-238.
[48]
MUHLFRIEDEL R, MICHALAKIS S, GARCIA G M. Optimized technique for subretinal injections in mice[J]. Methods Mol Biol,2013,935:343-349.
[49]
GHAZI N G, ABBOUD E B, NOWILATY S R. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial[J]. Hum Genet,2016,135(3):327-343.
[50]
TESTA F, MAGUIRE A M, ROSSI S. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital amaurosis type 2[J]. Ophthalmology,2013,120(6):1283-1291.
[51]
GORDON K, DEL M A, SANDER I. Gene therapies in ophthalmic disease[J]. Nat Rev Drug Discov,2019,18:415-416.
[52]
PENG Y, TANG L, ZHOU Y. Subretinal injection: a review on the novel route of therapeutic delivery for vitreoretinal diseases[J]. Ophthalmic Res,2017,58(4):217-226.
[53]
CAMPOCHIARO P A, LAUER A K, SOHN E H. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study[J]. Hum Gene Ther,2017,28(1):99-111.
[54]
CONSTABLE I J, PIERCE C M, LAI C M. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration[J]. Ebiomed,2016,14:168-175.
[55]
HUSSAIN R M, CIULLA T A. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration[J]. Expert Opin Emerg Drugs,2017,22(3):235-246.