LRRK2 gene mutation-associated semantic variant primary progressive aphasia: one case report and literatures review
GUO Shi-peng1, CHEN Da-ning2, LEI Xiao-yang1, ZHANG An-ni1, WU Xu-ling1, LI Ya1, HE Dian1
1 Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China;
2 Department of Psychosomatic Medicine, Guizhou Second Provincial People's Hospital, Guiyang 550004, Guizhou, China
Objective To report the clinical phenotype and gene mutation characteristics of a case with leucine-rich repeat kinase 2 (LRRK2) gene mutation-associated semantic variant primary progressive aphasia. Methods and Results The clinical data of a patient with language comprehension impairment as the first symptom were analyzed, including clinical manifestations, neuropsychological and linguistic assessments, cerebrospinal fluid biomarker tests, brain images and genetic testings. We made a systematic discussion in combination with relevant literatures. The results showed that the main clinical manifestations of the patient were difficulty in understanding words and difficulty in finding words. Aphasia Battery of Chinese test showed that the temporal lobe damage was prominent. Head MRI showed asymmetric atrophy of the bilateral frontal and temporal lobes, which was significant on the left side. 18F-FDG PET further suggested that the glucose metabolism in the bilateral anterior temporal lobes and bilateral frontal lobes was reduced. Cognitive impairment and dyskinesia gene detection revealed that the patient had a heterozygous mutation in exon 25 3468G > C of LRRK2 gene, which was the first report at home and abroad. The clinical diagnosis was semantic variant primary progressive aphasia. Conclusions This patient carries mutations in the LRRK2 gene. It is likely that due to changes in the structure and function of the encoded LRRK2 protein, which causes tau pathologic changes, and in turn leads to the degeneration and atrophy of the frontotemporal lobe and semantic variant primary progressive aphasia. The discovery of this gene mutation expands the gene mutation spectrum of frontotemporal lobe dege-neration.
郭仕鹏, 陈达宁, 雷晓阳, 张安妮, 吴旭玲, 李娅, 贺电. LRRK2基因突变相关语义变异型原发性进行性失语一例并文献复习[J]. 中国现代神经疾病杂志, 2020, 20(6): 541-545.
GUO Shi-peng, CHEN Da-ning, LEI Xiao-yang, ZHANG An-ni, WU Xu-ling, LI Ya, HE Dian. LRRK2 gene mutation-associated semantic variant primary progressive aphasia: one case report and literatures review. Chinese Journal of Contemporary Neurology and Neurosurgery, 2020, 20(6): 541-545.
Mesulam MM. Primary progressive aphasia and the language network:the 2013 H. Houston Merritt Lecture[J]. Neurology, 2013, 81:456-462.
[2]
Spinelli EG, Mandelli ML, Miller ZA, Santos-Santos MA, Wilson SM, Agosta F, Grinberg LT, Huang EJ, Trojanowski JQ, Meyer M, Henry ML, Comi G, Rabinovici G, Rosen HJ, Filippi M, Miller BL, Seeley WW, Gorno-Tempini ML. Typical and atypical pathology in primary progressive aphasia variants[J]. Ann Neurol, 2017, 81:430-443.
[3]
Ji T, Ye S, Fan DS. Gene characteristics in frontotemporal dementia and its correlations with amyotrophic lateral sclerosis[J]. Zhonghua Nei Ke Za Zhi, 2017, 56:781-784.[冀拓, 叶珊, 樊东升. 额颞叶痴呆的致病基因特点及其与肌萎缩侧索硬化关系[J]. 中华内科杂志, 2017, 56:781-784.]
[4]
Olszewska DA, Lonergan R, Fallon EM, Lynch T. Genetics of frontotemporal dementia[J]. Curr Neurol Neurosci Rep, 2016, 16:107.
[5]
Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M. Classification of primary progressive aphasia and its variants[J]. Neurology, 2011, 76:1006-1014.
[6]
Hales CM, Hu WT. From frontotemporal lobar degeneration pathology to frontotemporal lobar degeneration biomarkers[J]. Int Rev Psychiatry, 2013, 25:210-220.
[7]
Bian H, Van Swieten JC, Leight S, Massimo L, Wood E, Forman M, Moore P, de Koning I, Clark CM, Rosso S, Trojanowski J, Lee VM, Grossman M. CSF biomarkers in frontotemporal lobar degeneration with known pathology[J]. Neurology, 2008, 70:1827-1835.
[8]
Steinacker P, Hendrich C, Sperfeld AD, Jesse S, von Arnim CA, Lehnert S, Pabst A, Uttner I, Tumani H, Lee VM, Trojanowski JQ, Kretzschmar HA, Ludolph A, Neumann M, Otto M. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Arch Neurol, 2008, 65:1481-1487.
[9]
Kuiperij HB, Versleijen AA, Beenes M, Verwey NA, Benussi L, Paterlini A, Binetti G, Teunissen CE, Raaphorst J, Schelhaas HJ, Küsters B, Pijnenburg YA, Ghidoni R, Verbeek MM. Tau rather than TDP-43 proteins are potential cerebrospinal fluid biomarkers for frontotemporal lobar degeneration subtypes:a pilot study[J]. J Alzheimers Dis, 2017, 55:585-595.
[10]
Goossens J, Bjerke M, Van Mossevelde S, Van den Bossche T, Goeman J, De Vil B, Sieben A, Martin JJ, Cras P, De Deyn PP, Van Broeckhoven C, van der Zee J, Engelborghs S. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration[J]. Alzheimers Res Ther, 2018, 10:31.
[11]
Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J, Lomen-Hoerth C, Wilhelmsen KC, Lee VM, Grossman M, Miller BL. Comparison of family histories in FTLD subtypes and related tauopathies[J]. Neurology, 2005, 65:1817-1819.
[12]
Knibb JA, Xuereb JH, Patterson K, Hodges JR. Clinical and pathological characterization of progressive aphasia[J]. Ann Neurol, 2006, 59:156-165.
[13]
Rajput A, Dickson DW, Robinson CA, Ross OA, Dächsel JC, Lincoln SJ, Cobb SA, Rajput ML, Farrer MJ. Parkinsonism, LRRK2 G2019S, and tau neuropathology[J]. Neurology, 2006, 67:1506-1508.
[14]
Guerreiro PS, Gerhardt E, Lopes da Fonseca T, Bähr M, Outeiro TF, Eckermann K. LRRK2 promotes tau accumulation, aggregation and release[J]. Mol Neurobiol, 2016, 53:3124-3135.
[15]
Miklossy J, Qing H, Guo JP, Yu S, Wszolek ZK, Calne D, McGeer EG, McGeer PL. LRRK2 and chronic inflammation are linked to pallido-ponto-nigral degeneration caused by the N279K tau mutation[J]. Acta Neuropathol, 2007, 114:243-254.
[16]
Nguyen APT, Daniel G, Valdés P, Islam MS, Schneider BL, Moore DJ. G2019S LRRK2 enhances the neuronal transmission of tau in the mouse brain[J]. Hum Mol Genet, 2018, 27:120-134.
[17]
Bailey RM, Covy JP, Melrose HL, Rousseau L, Watkinson R, Knight J, Miles S, Farrer MJ, Dickson DW, Giasson BI, Lewis J. LRRK2 phosphorylates novel tau epitopes and promotes tauopathy[J]. Acta Neuropathol, 2013, 126:809-827.
[18]
Sanchez-Contreras M, Heckman MG, Tacik P, Diehl N, Brown PH, Soto-Ortolaza AI, Christopher EA, Walton RL, Ross OA, Golbe LI, Graff-Radford N, Wszolek ZK, Dickson DW, Rademakers R. Study of LRRK2 variation in tauopathy:progressive supranuclear palsy and corticobasal degeneration[J]. Mov Disord, 2017, 32:115-123.
[19]
Broce I, Karch CM, Wen N, Fan CC, Wang Y, Tan CH, Kouri N, Ross OA, Höglinger GU, Muller U, Hardy J, Momeni P, Hess CP, Dillon WP, Miller ZA, Bonham LW, Rabinovici GD, Rosen HJ, Schellenberg GD, Franke A, Karlsen TH, Veldink JH, Ferrari R, Yokoyama JS, Miller BL, Andreassen OA, Dale AM, Desikan RS, Sugrue LP. Immune-related genetic enrichment in frontotemporal dementia:an analysis of genome-wide association studies[J]. PLoS Med, 2018, 15:e1002487.
[20]
Dächsel JC, Ross OA, Mata IF, Kachergus J, Toft M, Cannon A, Baker M, Adamson J, Hutton M, Dickson DW, Farrer MJ. LRRK2 G2019S substitution in frontotemporal lobar degeneration with ubiquitin-immunoreactive neuronal inclusions[J]. Acta Neuropathol, 2007, 113:601-606.